152 resultados para Protein Synthesis


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Free amino acids (FAA) are used principally as substrate in protein synthesis and the source of energy in aerobic catabolism. In marine fish, embryo and larvae FAA are used to maintain body fluid osmolality during fish early development. However, there is essentially no information about FAA concentrations in early ontogeny of freshwater neotropical species in comparison to marine fishes. Therefore, the aim of this study was to evaluate the FAA concentrations in pacu, Piaractus mesopotamicus, eggs and larvae. Broodstock fish were induced to spawn and ovulated females were stripped of their eggs and immediately sampled for analysis. Larvae were sampled right after hatching (HL) and after the completion of the yolk-sac absorption (YSA). The wet weight of the HL and YSA larvae amounted to 0.5±0.1mg and 1.1±0.3mg, respectively. HL larvae showed higher levels of most of the indispensable amino acids (IAA) in comparison to eggs and YSA larvae. Exceptions were observed with His and Trp that showed higher or similar levels, respectively, in YSA larvae. The FAA Orn, Tau, Glu, Gln, Gly, and Tyr increased concentrations in both larval stages while that of Tau was found in higher concentration in all analyzed stages. Also, the concentrations of Asn, Ala, Pro, Ser, and Asp were higher in HL larvae. Both larval stages displayed a rise in total free IAA/total free DAA (dispensable amino acids) ratio. The authors conclude that the highest level of FAA in HL pacu larvae is indicative of active proteolysis of yolk reserves and a probable catabolism regulation of some FAA through spare-effect. In addition, Tau is one of the major FAA occurring during pacu ontogeny and may be performing regulation on body fluid osmolality regulation. © Copyright by the World Aquaculture Society 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained cardiovascular responses, which are characterized by arterial pressure and heart rate increases. Although it is well accepted that there is central nervous system mediation of cardiovascular adjustments during exercise, information on the role of neural pathways and signaling mechanisms is limited. It has been reported that glutamate, by acting on NMDA receptors, evokes the release of nitric oxide through activation of neuronal nitric oxide synthase (nNOS) in the brain. In the present study, we tested the hypothesis that NMDA receptors and nNOS are involved in cardiovascular responses evoked by an acute bout of exercise on a rodent treadmill. Moreover, we investigated possible central sites mediating control of responses to exercise through the NMDA receptor-nitric oxide pathway. Intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK-801) reduced both the arterial pressure and heart rate increase evoked by dynamic exercise. Intraperitoneal treatment with the preferential nNOS inhibitor 7-nitroindazole reduced exercise-evoked tachycardiac response without affecting the pressor response. Moreover, treadmill running increased NO formation in the medial prefrontal cortex (MPFC), bed nucleus of the stria teminalis (BNST) and periaqueductal gray (PAG), and this effect was inhibited by systemic pretreatment with MK-801. Our findings demonstrate that NMDA receptors and nNOS mediate the tachycardiac response to dynamic exercise, possibly through an NMDA receptor-NO signaling mechanism. However, NMDA receptors, but not nNOS, mediate the exercise-evoked pressor response. The present results also provide evidence that MPFC, BNST and PAG may modulate physiological adjustments during dynamic exercise through NMDA receptor-NO signaling. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The construction of synthetic cells is one of the major goals of bioengineering. The most successful approach consists in the encapsulation of biochemical materials (DNA, RNA, enzymes, etc.) inside lipid vesicles (liposomes), mimicking a cell structure. In this contribution, that also aims at introducing the reader to 'chemical synthetic biology,' we describe the current state of the art of 'semi-synthetic minimal cells' (SSMCs), namely, cell-like structures containing the minimal number of biological compounds that are required to reconstruct a function of interest. We will first describe how the concept of the minimal cell was originated and its relation with the theory of autopoiesis, then we review the most advanced results focused on genetic/metabolic networks inside liposomes. Next, we emphasize that relevance of physical aspects (too often neglected) that impact on the solute entrapment process, and finally we discuss new technological trends in SSMC research that will probably allow their future use in biotechnology. © 2013 Copyright © 2013 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis. © 2013 Marjan Nokhbehsaim et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências da Motricidade - IBRC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)