177 resultados para Porcelain veneer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To evaluate the shear bond strength and bond durability between a dual-cured resin cement (RC) and a high alumina ceramic (In-Ceram Alumina), subjected to two surface treatments. Materials and Methods: Forty disc-shaped specimens (sp) (4-mm diameter, 5-mm thick) were fabricated from In-Ceram Alumina and divided into two groups (n = 20) in accordance with surface treatment: (1) sandblasting by aluminum oxide particles (50 μm Al 2O 3) (SB) and (2) silica coating (30 μm SiO x) using the CoJet system (SC). After the 40 sp were bonded to the dual-cured RC, they were stored in distilled water at 37°C for 24 hours. After this period, the sp from each group were divided into two conditions of storage (n = 10): (a) 24 h-shear bond test 24 hours after cementation; (b) Aging-thermocycling (TC) (12,000 times, 5 to 55°C) and water storage (150 days). The shear test was performed in a universal test machine (1 mm/min). Results: ANOVA and Tukey (5%) tests noted no statistically significant difference in the bond strength values between the two surface treatments (p= 0.7897). The bond strengths (MPa) for both surface treatments reduced significantly after aging (SB-24: 8.2 ± 4.6; SB-Aging: 3.7 ± 2.5; SC-24: 8.6 ± 2.2; SC-Aging: 3.5 ± 3.1). Conclusion: Surface conditioning using airborne particle abrasion with either 50 μm alumina or 30 μm silica particles exhibited similar bond strength values and decreased after long-term TC and water storage for both methods. © 2011 by The American College of Prosthodontists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate the influence of different air abrasion protocols on the surface roughness of an yttria-stabilized polycrystalline tetragonal zirconia) (Y-TZP) ceramic, as well as the surface topography of the ceramic after the treatment. Method: Fifty-four specimens (7.5×4×7.5mm) obtained from two ceramic blocks (LAVA, 3M ESPE) were flattened with fine-grit sandpaper and subjected to sintering in the ceramic system's specific firing oven. Next, the specimens were embedded in acrylic resin and the surfaces to be treated were polished in a polishing machine using sandpapers of decreasing abrasion (600- to 1,200-grit) followed by felt discs with 10μm and 3μm polishing pastes and colloidal silica. The specimens were then randomly assigned to 9 groups, according to factors particle and pressure(n=6): Gr1- control; Gr2- Al 2O 3(50μm)/2.5 bar; Gr3- Al 2O 3(110μm)/2.5 bar; Gr4- SiO 2(30μm)/2.5 bar; Gr5- SiO 2(30μm)/2.5 bar; Gr6- Al 2O 3(50μm)/3.5 bar; Gr7- Al2O3(110μm)/3.5 bar; Gr8- SiO 2(30μm)/3.5 bar; Gr9- SiO 2(30μm)/3.5 bar. After treatments, surface roughness was analyzed by a digital optical profilometer and the morphology was examined by scanning electron microscopy (SEM). Data (μm) were subjected to statistical analysis by Dunnett's test (5%), two-way ANOVA and Tukey's test (5%). Results: The type of particle (p=0.0001) and the pressure (p=0.0001) used in the air abrasion protocols influenced the surface roughness values among the experimental groups (ANOVA). The mean surface roughness values (μm) obtained for the experimental groups (Gr2 to Gr9) were, respectively: 0.37 D; 0.56 BC; 0.46 BC; 0.48 CD; 0.59 BC; 0.82 A; 0.53B CD; 0.67 AB. The SEM analysis revealed that Al 2O 3, regardless of the particle size and pressure used, caused damage to the surface of the specimens, as it produced superficial damages on the ceramic, in the form of grooves and cracks. Conclusion: Al2O3 (110 μm/3.5 bar) air abrasion promoted the highest surface roughness on the ceramics, but it does not mean that this protocol promotes better ceramic-cement union compared to the other air abrasion protocols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this study was to evaluate the influence of different primers on the microtensile bond strength (μT BS) between a feldspathic ceramic and two composites. Forty blocks (6.0 × 6.0 × 5.0 mm 3) were prepared from Vita Mark II . After polishing, they were randomly divided into 10 groups according to the surface treatment: Group 1, hydrofluoric acid 10% (HF) + silane; Group 2, CoJet + silane; Group 3, HF + Metal/Zirconia Primer; Group 4, HF + Clearfil Primer; Group 5, HF + Alloy Primer; Group 6, HF + V-Primer; Group 7, Metal/Zirconia Primer; Group 8, Clearfil Primer; Group 9, Alloy Primer; Group 10, V-Primer. After each surface treatment, an adhesive was applied and one of two composite resins was incrementally built up. The sticks obtained from each block (bonded area: 1.0 mm2 ± 0.2 mm) were stored in distilled water at 37°C for 30 days and submitted to thermocycling (7,000 cycles; 5°C/55°C ± 1°C). The μT BS test was carried out using a universal testing machine (1.0 mm/min). Data were analyzed using ANOVA and a Tukey test (α = 0.05). The surface treatments significantly affected the results (P < 0.05); no difference was observed between the composites (P > 0.05). The bond strength means (MPa) were as follows: Group 1a = 29.6; Group 1b = 33.7; Group 2a = 28.9; Group 2b = 27.1; Group 3a = 13.8; Group 3b = 14.9; Group 4a = 18.6; Group 4b = 19.4; Group 5a = 15.3; Group 5b = 16.5; Group 6a = 11; Group 6b = 18; Groups 7a to 10b = 0. While the use of primers alone was not sufficient for adequate bond strengths to feldspathic ceramic, HF etching followed by any silane delivered higher bond strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After concluding the main phase of commercial exploration of latex (about 30 years ago), rubber wood plantations can be utilized as an alternative source of wood for sawmills and other wood based products with more aggregate value; tendency already confirmed in countries of southeastern Asia. The main purpose of this research was to evaluate the influence of dynamic modulus of elasticity veneers on the mechanical performance in the bending of plywood made from Hevea brasiliensis. For this study, rubber tree veneers were sorted in three classes of dynamic modulus of elasticity: low (from 4887-7323 MPa), medium (from 8200-8948 MPa) and high (from 10979-13010 MPa). Panels were produced according to five treatments with different veneer classes and arrangements. Results showed significant effect of the treatments in the mechanical performance in the bending of panels. Panels with better mechanical performance were produced exclusively with medium and high dynamic modulus of elasticity. Panels made with low modulus of elasticity veneers presented lower mechanical performance even when combined with high modulus of elasticity veneers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of conventional and whitening dentifrices on the weight loss, surface roughness, and early in situ biofilm formation on the surface of dental ceramics. Standardized feldspar ceramic specimens (Vita VM7 and Vita VM13) were submitted to the following experimental conditions: no brushing; brushing without a dentifrice; brushing with a conventional dentifrice; and brushing with a whitening dentifrice. A brushing machine was used to simulate brushing. The mass and surface roughness of all specimens from the test groups were evaluated prior to and after brushing. Ten participants used an oral device for eight hours to evaluate the biofilm formed in situ on the specimens. Scanning electron microscopy was used for qualitative and quantitative analysis of the biofilm. ANOVA and Tukey tests were used to analyze the results of weight loss, surface roughness, and presence of bacteria. A one-way Kruskal-Wallis test was used for bacterial colonization results. For both ceramics, brushing with a whitening dentifrice resulted in weight loss that was significantly greater when compared to brushing without a dentifrice or with a conventional dentifrice. Increased surface roughness was noticed on VM13 ceramic samples with both dentifrices, whereas only conventional dentifrice had a significant effect on the surface roughness of VM7 samples. For both VM7 and VM13, no difference was found between the experimental conditions with regard to the presence or number of bacteria. Cocci and short rods were the predominant microbial morphotypes. Granular or fibrillar acellular material partially covered the specimens. Brushing with a whitening dentifrice resulted in significant weight loss of ceramic restorations, while brushing with both conventional and whitening dentifrices can roughen ceramic surfaces. The increase in roughness was not clinically significant to contribute to increased biofilm formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To investigate the influence of the convergence angle of tooth preparation on the fracture load of Y-TZP-based ceramic (YZ-Vita YZ) substructure (SB) veneered with a feldspathic porcelain (VM9-Vita VM9). Methods: Finite element stress analysis (FEA) was performed to examine the stress distribution of the system. Eighty YZ SB were fabricated using a CAD-CAM system and divided into four groups (n = 20), according to the total occlusal convergence (TOC) angle: G6-6° TOC; G12-12° TOC; G20-20° TOC; and G20MOD-20° TOC with modified SB. All SB were veneered with VM9, cemented in a fiber reinforced epoxy resin die, and loaded to failure. Half of the specimens from each group (n = 10) were cyclic fatigued (106 cycles) before testing. Failure analysis was performed to determine the fracture origin. Data were statistically analyzed using Anova and Tukey's tests (α = 0.05). Results: The greatest mean load to fracture value was found for the G20MOD, which was predicted by the FEA. Cyclic fatigue did not significantly affect the load of fracture. Catastrophic failure originating from the internal occlusal surface of the SB was the predominant failure mode, except for G20MOD. Significance: The YZ-VM9 restorations resisted greater compression load than the usual physiological occlusal load, regardless of the TOC angle of preparations. Yet, the G20MOD design produced the best performance among the experimental conditions evaluated. © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aimof this study was to evaluate the stress distribution on bone tissue with a single prosthesis supported by implants of large and conventional diameter and presenting different veneering materials using the 3-D finite elementmethod. Sixteenmodels were fabricated to reproduce a bone block with implants, using two diameters (3.75 × 10 mmand 5.00 × 10 mm), four different veneering materials (composite resin, acrylic resin, porcelain, and NiCr crown), and two loads (axial (200 N) and oblique (100 N)). For data analysis, the maximum principal stress and vonMises criterion were used. For the axial load, the cortical bone in allmodels did not exhibit significant differences, and the trabecular bone presented higher tensile stresswith reduced implant diameter. For the oblique load, the cortical bone presented a significant increase in tensile stress on the same side as the loading for smaller implant diameters. The trabecular bone showed a similar but more discreet trend. There was no difference in bone tissue with different veneering materials. The veneering material did not influence the stress distribution in the supporting tissues of single implant-supported prostheses. The large-diameter implants improved the transference of occlusal loads to bone tissue and decreased stress mainly under oblique loads.Oblique loading was more detrimental to distribution stresses than axial loading. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Geologia Regional - IGCE