265 resultados para Physical Chemistry problems advanced gas thermodynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Cu2+ contents and of firing temperature on sintering and crystallite growth of nanocrystalline SnO2 xerogels was analyzed by thermoanalysis (mass loss (TG), linear shrinkage, and differential thermal analysis (DTA)), X-ray powder diffraction (XRPD), and EXAFS (extended X-ray absorption fine structures) measurements. Samples were prepared by two methods: (a) coprecipitation of a colloidal suspension from aqueous solution containing both Sn(IV) and Cu(II) ions and (b) grafting copper(II) species on the surface of tin pride gel. The thermoanalysis has shown that the shrinkage associated with the mass loss decreases by increasing the amount of copper. The EXAFS measurements carried out at the Cu K edge have evidenced the presence of copper in substitutional solid solution for the dried xerogel prepared with 0.7 mol % of copper, while for higher concentration of doping, copper has been observed also at the external surface of crystallites. The solid solution is metastable and copper migrates toward the surface during firing. The XRPD and DTA results have shown a recrystallization process near 320 degrees C, which leads to crystallite growth. The presence of copper segregated near the crystallite surface controls its growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of acetylacetone (acac) complexing ligand on the formation and growth of tin oxide-based nanoparticles during thermohydrolysis at 70 degreesC of a tin precursor SnCl4-n(acac)(n) (0 less than or equal to n less than or equal to 2) solution was analyzed by in situ small-angle X-ray scattering. A. transparent and stable sol was obtained after 2 h of thermohydrolysis at 70 degreesC, allowing the quantitative determination of the particle volume distribution function and its variation with the reaction time. The number of colloidal particles for equivalent thermohydrolysis temperature and time decreases as the [acac]/[Sn] ratio in initial solution increases from 0.5 to 6. Instead, the amount of soluble species remaining in solution increases for increasing [acac]/[Sn] ratio within the same range. This indicates that increasing amounts of Sn-acetylacetone complexes partially prevent the hydrolysis and consequent formation of colloidal particles. The N-2 adsorption isotherm characterization of freeze-dried powders demonstrates that the average pore size is approximately equal to the average size (approximate to9 Angstrom) of the colloidal primary particles in the sol, and that the porosity and surface area (approximate to200 m(2) g(-1)) are independent of the acac content in the initial solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A joint experimental and theoretical study has been carried out to rationalize the results of visible photoluminescence measurements at room temperature on Sr1-xTiO3-x (ST) perovskite thin films. From the experimental side, ST thin films, x = 0 to 0.9, have been synthesized following soft chemical processing, and the corresponding photoluminescence properties have been measured. First principles quantum mechanical techniques, based on density functional theory at the B3LYP level, have been employed to study the electronic structure of a crystalline, stoichiometric (x = 0) ST-s model and a nonstoichiometric (SrO-deficient, x not equal 0) and structurally disordered ST-d model. The relevance of the present theoretical and experimental results of the photoluminescence behavior of ST is discussed. The optical spectra and the calculations indicate that the symmetry-breaking process on going from ST-s to ST-d creates electronic levels in the valence band. Moreover, an analysis of the Mulliken charge distribution reveals a charge gradient in the structure. These combined effects seem to be responsible for the photoluminescence behavior of deficient Sr1-xTiO3-x.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonisothermal study of the kinetics of the nanoporosity elimination in monolithic silica xerogels, prepared from acid and ultrasound catalyzed hydrolysis of tetraethylortosilicate (TEOS), has been carried out by means of in situ linear shrinkage measurements performed with different heating rates. The study could be applied up to almost alpha similar to 0.6 of the volume fraction alpha of eliminated pores. The activation energy was found increasing from about 3.2 x 10(2) kJ/mol for alpha similar to 0.06 up to about 4.4 x 10(2) kJ/mol for alpha. similar to 0.44. The sintering process accompanying the nanopore elimination in this set of xerogels is in agreement with a viscous flux sintering process with the hydroxyl content diminishing with the volume fraction of eliminated pores. All the volume fraction of eliminated pores versus temperature (T) curves can be matched onto a unique curve with an appropriate rescaling of the T axis, independent of the heating rate. This scaling property suggests that the path of sintering seems the same, regardless of the heating rate; the difference is that the rate is faster at higher temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the great importance of ion transport, most of the widely accepted models and theories are valid only in the not very practical limit of low concentrations. Aiming to extend the range of applicability to moderate concentrations, a number of modified models and equations (some approximate, some fundamented on different assumptions, and some just empirical) have been reported. In this work, a general treatment for the electrical conductivity of ionic solutions has been developed, considering the electrical conductivity as a transport phenomenon governed by dissipation and feedback. A general expression for the dependence of the specific conductivity on the solution viscosity (and indirectly on concentration), from which the whole conductivity curve can be obtained, has been derived. The validity of this general approach is demonstrated with experimental results taken from the literature for aqueous and nonaqueous solutions of electrolytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The system of two parallel planar, arbitrarily charged surfaces immersed in a solution containing only one ionic species, the counterions, is completely analyzed under a mean field Poisson-Boltzmann approach. Results for the pressure, reduced potential, and counterionic concentration are graphically displayed for two dissociating membranes and for a dissociating and an adsorbing membrane. The results indicate that the system of two planar parallel dissociating membranes acts as a buffer for pressure values and for counterionic concentration values in regions interior to and far from the membranes. The results are related to properties of planar or quasiplanar structures in biological cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we report the synthesis of titanium oxide nanocrystals, especially the rutile TiO2 phase with nanorod morphology, by a method based on peroxotitanium complex decomposition. The results indicate that the anisotropic morphology reported for rutile TiO2 nanocrystals is related to the oriented attachment process. Despite the predominance of rutile nanocrystals at longer treatment times, the nanocrystals were obtained also in the anatase type, according to the degradation time adopted. XANES results evidenced the absence of structural correlation between the peroxytitanium complex and phase evolution, and the coexistence of the two phases strongly suggests a correlation of the oriented attachment mechanism and the rutile phase stabilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular-level interactions are found to bind iron tetrasulfonated phthalocyanine (FeTsPc) and the polyelectrolyte poly(allylamine hydrochloride) (PAH) in electroactive layer-by-layer (LBL) films. These interactions have been identified by comparing Fourier transform infrared (FTIR) and Raman spectroscopy data from bulk samples of FeTsPc and PAH with those from FeTsPc/PAH LBL films. of particular importance were the SO3- -NH3 interactions that we believe to bind PAH and FeTsPc and the interactions between unprotonated amine groups of PAH and the coordinating metal of the phthalocyanine. The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the Q band of FeTsPc at 676 nm. Film thickness estimated with profilometry was ca. I I Angstrom per bilayer for films adsorbed on glass. Reflection absorption infrared spectroscopy (RAIRS) revealed an anisotropy in the LBL film adsorbed on gold with FeTsPc molecules oriented perpendicularly to the substrate plane. Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 1.07 and 0.81 V, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/Ag+). The peak shape and current dependence on the scan rate suggest that the process is a diffusion controlled charge transport. In the presence of dopamine, the electroactivity of FeTsPc/PAH LBL films vanishes due to a passivation effect. Dopamine activity is not detected either because the interaction between Fe atoms and NH2 groups prevents dopamine molecules from coordinating with the Fe atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the adsorption and morphological properties of layer-by-layer films of poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS) are affected dramatically by different treatments of the POMA solutions employed to prepare the films. Whereas the dimension of the globular structures seen by atomic force microscopy increases non monotonically during film growth in parent POMA solution, owing to a competition of adsorption/desorption processes, it changes monotonically for the fractionated POMA. The roughness of the latter films depends on the concentration of the solution and saturates at a given size of the scan window. This allowed us to apply scaling laws that indicated a self-affine mechanism for adsorption of the treated POMA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper quantifies and develops the kinetic aspects involved in the mechanism of interplay between electron and ions presented elsewhere(1) for KhFek[Fe(CN)(6)](l)center dot mH(2)O (Prussian Blue) host materials. Accordingly, there are three different electrochemical processes involved in the PB host materials: H3O+, K+, and H+ insertion/extraction mechanisms which here were fully kinetically studied by means of the use of combined electronic and mass transfer functions as a tool to separate all the processes. The use of combined electronic and mass transfer functions was very important to validate and confirm the proposed mechanism. This mechanism allows the electrochemical and chemical processes involved in the KhFek[Fe(CN)(6)](l)center dot mH(2)O host and Prussian Blue derivatives to be understood. In addition, a formalism was also developed to consider superficial oxygen reduction. From the analysis of the kinetic processes involved in the model, it was possible to demonstrate that the processes associated with K+ and H+ exchanges are reversible whereas the H3O+ insertion process was shown not to present a reversible pattern. This irreversible pattern is very peculiar and was shown to be related to the catalytic proton reduction reaction. Furthermore, from the model, it was possible to calculate the number density of available sites for each intercalation/deintercalation processes and infer that they are very similar for K+ and H+. Hence, the high prominence of the K+ exchange observed in the voltammetric responses has a kinetic origin and is not related to the amount of sites available for intercalation/deintercalation of the ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nd3+-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly (oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF3SO3)(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), Si-29 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a modified chalcogenide glass was studied by X-ray powder diffraction, differential thermal analysis, infrared and Raman scattering spectroscopies. The study of this new matrix opens new perspectives to fabricate Pr3+-doped fibers to operate as an optical amplifier in the 1.3 mum telecommunications window. The Pr3+-doped 70Ga(2)S(3)-30La(2)S(3) glass was modified through the substitution of La2S3 by La2O3, which improves the thermal stability of these glasses without any modification of phonon energy. The possibility to pull a fiber from this glass system without any devitrification is easily achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation of the antibiotic tetracycline (TC) by the photo-Fenton process was evaluated under black-light and solar irradiation. The influences of iron source (Fe(NO3)(3) or ferrioxalate), hydrogen peroxide and matrix (pure water, surface water and a sewage treatment plant effluent-STP) were evaluated. Under black-light irradiation, TC degradation was favored in the presence of Fe(NO3)(3), achieving total degradation after 1 min irradiation, while under solar light the use of ferrioxalate favors the degradation. Nevertheless, no significant difference in total organic carbon removal was observed between these two iron sources, achieving a residual concentration of around 5 mg L-1 under black-light and 2 mg L-1 under solar light irradiation. No decrease of the degradation efficiency relative to pure water was observed when TC was irradiated in a sample of surface water, under either black-light or solar irradiation. However, lower efficiency was obtained under black-light when TC was present in a sample of STP effluent, indicating the interference of the constituents of this sample on the overall efficiency of the process. on the other hand, under solar irradiation in the presence of ferrioxalate, no influence of the matrix was observed, even in the sample of STP effluent, achieving total degradation of TC in 1.5 min. (c) 2006 Elsevier B.V. All rights reserved.