139 resultados para Phosphorus deficiency
Resumo:
The dinuclear azido-palladium(II) complex [Pd2(N3)4(PPh3)2(μ-ted)], where PPh3 = triphenylphosphine and ted = triethylenediamine, was synthesized and characterized by single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 11.5875(2)Å, b = 13.0817(3)Å, c = 15.2618(3)Å, α = 93.306(2)°, β =110.040(1)°, γ = 98.486(1)°, V = 2134.95(8)Å3, Z = 2. Each Pd(II) center displays a distorted squareplanar coordination environment formed by two N atoms from two trans terminally coordinated azido groups, one P atom from the phosphine and one N atom from the bridging ted ligand. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
Patients with motor deficiency have variable difficulties with mechanical plaque control, and as a consequence, the incidence of dental caries and periodontal disease can be higher in these patients. The objective of this study was to evaluate the clinical and microbiological efficacy of a toothpaste containing 1% chlorhexidine, which was used by patients with motor deficiency for 14 days. The reduction in plaque and gingival index and the impact on salivary microorganisms was evaluated. We conclude that the motivation of caregivers to carry out oral hygiene for patients with mental and motor deficiency is of great importance and is effective in reducing the formation of plaque as long as it is continuously reinforced. The use of chlorhexidine- containing toothpaste significantly reduced the plaque index and microorganism count between days 0 and 14. A reduction was also observed in the group that used a dentifrice without the chlorhexidine, but this difference was not significant. © 2010 Special Care Dentistry Association and Wiley Periodicals, Inc.
Resumo:
The metabolic effects caused by hydric deficiency (HD) on Eucalyptus grandis clones were assessed by an experiment where plants were cultivated in four blocks. The first was the control block, normally irrigated, whereas the other three blocks were submitted to cycles of hydric deficiency. Analysis of photosynthetic efficiency, enzymatic activity of antioxidant response system, level of pigments and L-proline concentration were performed to evaluate the HD effects. Results showed that HD altered some parameters related to photosynthetic activity, pigments accumulation, proline and enzymatic activity. Clone 433 of E. grandis presented higher response ability to HD.
Resumo:
Plant Growth Promoting Rhizobacteria (PGPR) has been used as a biofertilizer, bringing benefits to agriculture as Phosphorus Solubilizing Bacteria (PSB), indole-acetic acid (IAA) producers, and with other activites. The goal of this report was the identification of PGPR from soils under sugarcane crops by 16S rRNA sequencing, and the evaluation of the ability of phosphorus solubilizing and IAA production by biological assays. The isolates of this work were obtained from three areas of sugarcane crop from São Paulo State, Brazil. All isolates came from rhizosphere soil, and in a total of 60 isolates just 10 have showed high ability in phosphorus solubilizing. The selection of PSB may be done by phenotypic and/or genotypic characterization. Among ten isolates Enterobacter sp. (FJ890899), Entrobacter homaechei subsp. verschuerennii (FJ890998), Burkholderia sp. (FJ890895), and Labrys portucalensis (FJ890891) were able to IAA production. © 2006-2012 Asian Research Publishing Network (ARPN).
Resumo:
The objective of this research was to study the effects of P fertilizers applied at time of planting on lychees' nutritional status and on plant growth. The treatments consisted of five doses of P: zero, 50, 100, 200, and 300 g of P2O5 per plant, furnished by triple superphosphate. Plant diameter was evaluated during two years and the plants' nutritional status on the second year. The second year foliar levels of macro and micronutrients (with the exception of Zn) were increased by the P fertilizer. The orchard's initial development, especially during the second year, was also influenced by the fertilizer. The P doses of 164 and 158 g of P2O5 per plant resulted in the largest plant diameter after the first and the second year, respectively. These doses were found to be associated with a foliar P level of <1.4 g kg-1. © 2012 Renato de Mello Prado et al.
Resumo:
Relief is regarded as the abiotic factor most strongly influencing pedogenic processes at a local scale. The spatial correlations between the composition of the clay fraction (iron - Fe and aluminum - Al oxides, kaolinite and organic matter - OM) and contents of available phosphorus (P) of an Oxisol were evaluated at hillslope scale under sugarcane cultivation. A total of 119 samples were collected at intersection points on a 100. ×. 100. m georeferenced grid of regularly spaced points 10. m apart in the 0.2-0.4. m depth in an area consisting of two landform components namely: component I (an area with a linear hillslope curvature), and component II (one with a concave-convex hillslope curvature). Soil OM and available P contents were subjected to descriptive statistics and geostatistical analyses in order to assess their variability and spatial dependence. All attributes studied were spatially dependent. Available phosphorus had positive spatial correlation with high crystalline goethite, hematite and gibbsite. Identifying small hillslope curvatures is useful with a view to better understanding their relationships with soil organic matter and available phosphorus, as well as kaolinite and Fe and Al oxide attributes. A simple correlation analysis by itself is inadequate to relate attributes, which requires a supplemental, geostatistical technique. © 2012 Elsevier B.V..
Resumo:
Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Magnesium (Mg2+) deficiency is a frequently occurring disorder that leads to loss of bone mass, abnormal bone growth and skeletal weakness. It is not clear whether Mg2+ deficiency affects the formation and/or activity of osteoclasts. We evaluated the effect of Mg2+ restriction on these parameters. Bone marrow cells from long bone and jaw of mice were seeded on plastic and on bone in medium containing different concentrations of Mg2+ (0.8 mM which is 100% of the normal value, 0.4, 0.08 and 0 mM). The effect of Mg2+ deficiency was evaluated on osteoclast precursors for their viability after 3 days and proliferation rate after 3 and 6 days, as was mRNA expression of osteoclastogenesis-related genes and Mg2+-related genes. After 6 days of incubation, the number of tartrate resistant acid phosphatase-positive (TRACP+) multinucleated cells was determined, and the TRACP activity of the medium was measured. Osteoclastic activity was assessed at 8 days by resorption pit analysis. Mg2+ deficiency resulted in increased numbers of osteoclast-like cells, a phenomenon found for both types of marrow. Mg2+ deficiency had no effect on cell viability and proliferation. Increased osteoclastogenesis due to Mg2+ deficiency was reflected in higher expression of osteoclast-related genes. However, resorption per osteoclast and TRACP activity were lower in the absence of Mg2+. In conclusion, Mg2+ deficiency augmented osteoclastogenesis but appeared to inhibit the activity of these cells. Together, our in vitro data suggest that altered osteoclast numbers and activity may contribute to the skeletal phenotype as seen in Mg2+ deficient patients. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Nutrient use efficiency has become an important issue in agriculture, and crop rotations with deep vigorous rooted cover crops under no till may be an important tool in increasing nutrient conservation in agricultural systems. Ruzigrass (Brachiaria ruziziensis) has a vigorous, deep root system and may be effective in cycling P and K. The balance of P and K in cropping systems with crop rotations using ruzigrass, pearl millet (Pennisetum glaucum) and ruzigrass + castor bean (Ricinus communis), chiseled or not, was calculated down to 0.60 m in the soil profile for 2 years. The cash crops were corn in the first year and soybean in the second year. Crop rotations under no-till increased available P amounts in the soil-plant system from 80 to 100 %, and reduced K losses between 4 and 23 %. The benefits in nutrient balance promoted by crop rotations were higher in the second year and under without chiseling. Plant residues deposited on the soil surface in no-till systems contain considerable nutrient reserve and increase fertilizer use efficiency. However, P release from ruzigrass grown as a sole crop is not synchronized with soybean uptake rate, which may result in decreased yields. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Tartrate-resistant acid (ACP) and alkaline phosphatase (ALP) activities were evaluated in the serum and bone of broiler chicks fed with various amounts of non-phytate phosphorus (NPP) or phytase. Data were analysed using a 4×3 factorial design containing four NPP levels per period. Analyses were performed in chicks aged 1-21 days (0.21; 0.29; 0.37; 0.45 ppm) and 36-42 days (0.13; 0.21; 0.29; 0.37 ppm) and under three different phytase level treatments (0, 500 and 1000 FTU/kg) for each period. In 42-day-old animals, the serum ACP and ALP activities did not differ in response to NPP and phytase levels and bone ACP activity decreased with increased phosphorus levels. We observed effects on ALP activity by approximately 70% in lower phosphorus (0.13 and 0.21) levels without phytase. The phytase addition decreased (P<0.05) ALP values in lower phosphorus levels. The bone ALP and ACP levels of 21-day-old animals were not affected by phosphorus or phytase. Pi depletion induces a significant increase in alkaline phosphatase synthesis, suggesting that the function of this enzyme is downregulated by phosphorus. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The wavelength-integrated absorbance (WIA) and summation of absorbance (∑ lines) of different lines were evaluated to enhance sensitivity and determine B, P and S in medicinal plants by HR-CS FAAS. The lowest LOD for B (0.5mgL-1) and P (13.7mgL-1) was obtained by integration of lines 249.773nm (3pixels) and 247.620nm (5pixels), respectively. The ∑ lines for CS at 257.595nm and 257.958nm furnished LOD=30.5mgL-1, ca. 10% lower than the LOD obtained for the WIA using 257.595nm and 5pixels. Data showed the advantage of WIA over ∑ lines to improve sensitivity for all analytes. Under optimized conditions, calibration curves in the 1.0-100mgL-1 B and 50.0-2000mgL-1 P, S ranges were consistently obtained. Results obtained with the HR-CS FAAS method were in agreement at 98% and 95% confidence level with certified values for B and P, respectively. And results for S were in accordance to non-certified values. Concentrations of B, P, and S in 12 medicinal plants analyzed by the proposed method varied within the 19.4-34.5mgkg-1 B, 719-3910mgkg-1 P and 1469-7653mgkg-1 S ranges. © 2012 Elsevier B.V.
Resumo:
This study was aimed to evaluate the influence of vitamin D (VD) deficiency on cardiac metabolism, morphology, and function. Thus, we investigated the relationship of these changes with the length of the nutrient restriction. Male weanling Wistar rats were allocated into 4 groups: C2 (n=24), animals were fed an AIN-93G diet with 1000 IU VD/kg of chow and were kept under fluorescent light for 2 months; D2 (n=22), animals were fed a VD-deficient AIN-93G diet and were kept under incandescent light for 2 months; C4 (n=21) animals were kept in the same conditions of C2 for 4 months; and D4 (n=23) animals were kept in the same conditions of D2 for 4 months. Biochemical analyses showed lower β-hydroxyacyl coenzyme-A dehydrogenase activity and higher lactate dehydrogenase activity in VD-deficient animals. Furthermore, VD deficiency was related to increased cytokines release, oxidative stress, apoptosis, and fibrosis. Echocardiographic data showed left ventricular hypertrophy and lower fractional shortening and ejection fraction in VD-deficient animals. Difference became evident in the lactate dehydrogenase activity, left ventricular weight, right ventricle weight, and left ventricular mass after 4 months of VD deficiency. Our data indicate that VD deficiency is associated with energetic metabolic changes, cardiac inflammation, oxidative stress, fibrosis and apoptosis, cardiac hypertrophy, left chambers alterations, and systolic dysfunction. Furthermore, length of the restriction influenced these cardiac changes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ