341 resultados para PPBAR COLLIDER
Resumo:
We report a search for the standard model (SM) Higgs boson based on data collected by the D0 experiment at the Fermilab Tevatron Collider, corresponding to an integrated luminosity of 260 pb(-1). We study events with missing transverse energy and two acoplanar b jets, which provide sensitivity to the ZH production cross section in the nu nu bb channel, and to WH production when the lepton from the W ->center dot nu decay is undetected. The data are consistent with the SM background expectation, and we set 95% C.L. upper limits on sigma(pp -> ZH/WH) x B(H -> bb) from 3.4/8.3 to 2.5/6.3 pb, for Higgs-boson masses between 105 and 135 GeV.
Resumo:
We present a search for the production of a new heavy gauge boson W' that decays to a top quark and a bottom quark. We have analyzed 230 pb(-1) of data collected with the DO detector at the Fermilab Tevatron collider at a center-of-mass energy of 1.96 TeV. No significant excess of events above the standard model expectation is found in any region of the final state invariant mass distribution. We set upper limits on the production cross section of W' bosons times branching ratio to top quarks at the 95% confidence level for several different W, boson masses. We exclude masses between 200 and 610 GeV for a W' boson with standard-model-like couplings, between 200 and 630 GeV for a W, boson with right-handed couplings that is allowed to decay to both leptons and quarks, and between 200 and 670 GeV for a W' boson with right-handed couplings that is only allowed to decay to quarks. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
CMS is a general purpose experiment, designed to study the physics of pp collisions at 14 TeV at the Large Hadron Collider ( LHC). It currently involves more than 2000 physicists from more than 150 institutes and 37 countries. The LHC will provide extraordinary opportunities for particle physics based on its unprecedented collision energy and luminosity when it begins operation in 2007. The principal aim of this report is to present the strategy of CMS to explore the rich physics programme offered by the LHC. This volume demonstrates the physics capability of the CMS experiment. The prime goals of CMS are to explore physics at the TeV scale and to study the mechanism of electroweak symmetry breaking - through the discovery of the Higgs particle or otherwise. To carry out this task, CMS must be prepared to search for new particles, such as the Higgs boson or supersymmetric partners of the Standard Model particles, from the start- up of the LHC since new physics at the TeV scale may manifest itself with modest data samples of the order of a few fb(-1) or less. The analysis tools that have been developed are applied to study in great detail and with all the methodology of performing an analysis on CMS data specific benchmark processes upon which to gauge the performance of CMS. These processes cover several Higgs boson decay channels, the production and decay of new particles such as Z' and supersymmetric particles, B-s production and processes in heavy ion collisions. The simulation of these benchmark processes includes subtle effects such as possible detector miscalibration and misalignment. Besides these benchmark processes, the physics reach of CMS is studied for a large number of signatures arising in the Standard Model and also in theories beyond the Standard Model for integrated luminosities ranging from 1 fb(-1) to 30 fb(-1). The Standard Model processes include QCD, B-physics, diffraction, detailed studies of the top quark properties, and electroweak physics topics such as the W and Z(0) boson properties. The production and decay of the Higgs particle is studied for many observable decays, and the precision with which the Higgs boson properties can be derived is determined. About ten different supersymmetry benchmark points are analysed using full simulation. The CMS discovery reach is evaluated in the SUSY parameter space covering a large variety of decay signatures. Furthermore, the discovery reach for a plethora of alternative models for new physics is explored, notably extra dimensions, new vector boson high mass states, little Higgs models, technicolour and others. Methods to discriminate between models have been investigated. This report is organized as follows. Chapter 1, the Introduction, describes the context of this document. Chapters 2-6 describe examples of full analyses, with photons, electrons, muons, jets, missing E-T, B-mesons and tau's, and for quarkonia in heavy ion collisions. Chapters 7-15 describe the physics reach for Standard Model processes, Higgs discovery and searches for new physics beyond the Standard Model.
Resumo:
We present a study of eey and mu mu gamma events using 1109 (1009) pb-(1) of data in the electron (muon) channel, respectively. These data were collected with the DO detector at the Fermilab Tevatron pp collider at Is = 1.96 TeV. Having observed 453 (515) candidates in the eey (jtAy) final state, we measure the Z gamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta Rey > 0.7, and invariant mass of the di-lepton pair Mee > 30 GeV/(2)(c), to be 4.96 0.30(stat. + syst.) zE 0.30(lumi.) pb, in agreement with the Standard Model prediction of 4.74 0.22 pb. This is the most precise Zy cross section measurement at a hadron collider. We set limits on anomalous trilinear Zyy and ZZy gauge boson couplings of -0.085 < h(30)(y) < 0.084, -0.0053 < h(40)(y) < 0.0054 and -0.083 < h(30)(Z) < 0.082, 30 40 30 -0.0053 < h(40)(Z) < 0.0054 at the 95% C.L. for the form-factor scale A = 1.2 TeV. 40 Published by Elsevier B.V.
Resumo:
The WW gamma triple gauge boson coupling parameters are studied using p (p) over bar -> l nu gamma + X(l = e, mu) events at root s = 1.96 TeV. The data were collected with the D0 detector from an integrated luminosity of 162 pb(-1) delivered by the Fermilab Tevatron Collider. The cross section times branching fraction for p (p) over bar -> W(gamma) + X -> l nu gamma + X with E-T(gamma) > 8 GeV and Delta R-l gamma > 0.7 is 14.8 +/- 1.6(stat) +/- 1.0(syst) +/- 1.0(lum) pb. The one-dimensional 95% confidence level limits on anomalous couplings are -0.88 < Delta kappa(gamma) < 0.96 and -0.20 < lambda(gamma) < 0.20.
Resumo:
We report the results of a search for supersymmetry (SUSY) with gauge-mediated breaking in the missing transverse energy distribution of inclusive diphoton events using 263 pb(-1) of data collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2004. No excess is observed above the background expected from standard model processes, and lower limits on the masses of the lightest neutralino and chargino of about 108 and 195 GeV, respectively, are set at the 95% confidence level. These are the most stringent limits to date for models with gauge-mediated SUSY breaking with a short-lived neutralino as the next-to-lightest SUSY particle.
Resumo:
We present a measurement of the cross section for Z production times the branching fraction to tau leptons, sigma.Br(Z ->tau(+)tau(-)), in p (p) over bar collisions at root s=1.96 TeV in the channel in which one tau decays into mu nu(mu)nu(tau), and the other into hadrons+nu(tau) or e nu(e)nu(tau). The data sample corresponds to an integrated luminosity of 226 pb(-1) collected with the D0 detector at the Fermilab Tevatron collider. The final sample contains 2008 candidate events with an estimated background of 55%. From this we obtain sigma.Br(Z ->tau(+)tau(-)) = 237 +/- 15(stat)+/- 18(sys)+/- 15(lum)pb, in agreement with the standard model prediction.
Resumo:
We estimate the attainable limits on the coefficients of dimension-6 operators from the analysis of Higgs boson phenomenology, in the framework of a SUL(2) x U-Y(1) gauge-invariant effective Lagrangian. Our results, based on the data sample already collected by the collaborations at Fermilab Tevatron, show that the coefficients of Higgs-vector boson couplings can be determined with unprecedented accuracy. Assuming that the coefficients of all blind operators are of the same magnitude, we are also able to impose more restrictive bounds on the anomalous vector-boson triple couplings than the present limit from double gauge boson production at the Tevatron collider.
Resumo:
We present the results of a search for the production of an excited state of the muon, mu(*), in proton antiproton collisions at root s =1.96 TeV. The data have been collected with the D0 experiment at the Fermilab Tevatron Collider and correspond to an integrated luminosity of approximately 380 pb(-1). We search for mu(*) in the process p (p) over bar ->mu(*)mu, with the mu(*) subsequently decaying to a muon plus photon. No excess above the standard model expectation is observed in data. Interpreting our data in the context of a model that describes mu(*) production by four-fermion contact interactions and mu(*) decay via electroweak processes, we set a 95% confidence level production cross section upper limit ranging from 0.057 to 0.112 pb, depending on the mass of the excited muon. Choosing the scale for contact interactions to be Lambda=1 TeV, excited muon masses below 618 GeV are excluded.
Resumo:
We report results of a study of the B-s(0) oscillation frequency using a large sample of B-s(0) semileptonic decays corresponding to approximately 1 fb(-1) of integrated luminosity collected by the D0 experiment at the Fermilab Tevatron Collider in 2002-2006. The amplitude method gives a lower limit on the B-s(0) oscillation frequency at 14.8 ps(-1) at the 95% C.L. At Delta m(s)=19 ps(-1), the amplitude deviates from the hypothesis A=0 (1) by 2.5 (1.6) standard deviations, corresponding to a two-sided C.L. of 1% (10%). A likelihood scan over the oscillation frequency, Delta m(s), gives a most probable value of 19 ps(-1) and a range of 17
Resumo:
We have performed the first direct measurement of the time-integrated flavor untagged charge asymmetry in semileptonic B-s(0) decays A(SL)(s,unt) by comparing the decay rate of B-s(0) -> mu(+) D-s(-) nu X, where D-s(-) -> phi pi(-) and phi -> K+K-, with the charge-conjugate (B) over bar (0)(s) decay rate. This sample was selected from 1: 3 fb(-1) of data collected by the D0 experiment in run II of the Fermilab Tevatron collider. We obtain A(SL)(s,unt) = [1.23 +/- 0.97(stat) +/- 0.17(syst)] x 10(-2). Assuming that Delta m(s)/(Gamma) over bar (s) >> 1, this result can be translated into a measurement of the CP-violating phase in B-s(0) mixing: Delta Gamma(s)/Delta m(s) tan phi(s) = [2.45 +/- 1.93(stat) +/- 0.35(syst)] x 10(-2).
Resumo:
From an analysis of the decay B-s(0)-> J/psi phi, we obtain the width difference between the light and heavy mass eigenstates Delta Gamma equivalent to(Gamma(L)-Gamma(H))=0.17 +/- 0.09(stat)+/- 0.02(syst) ps(-1) and the CP-violating phase phi(s)=-0.79 +/- 0.56(stat)(-0.01)(+0.14)(syst). Under the hypothesis of no CP violation (phi(s)equivalent to 0), we obtain 1/Gamma=tau/(B-s(0))=1.52 +/- 0.08(stat)(-0.03)(+0.01)(syst) ps and Delta Gamma=0.12(-0.10)(+0.08)(stat)+/- 0.02(syst) ps(-1). The data sample corresponds to an integrated luminosity of about 1.1 fb(-1) accumulated with the D0 detector at the Fermilab Tevatron collider. This is the first direct measurement of the CP-violating mixing phase in the B-s(0) system.
Resumo:
Data collected by the do detector at a p (p) over bar center-of-mass energy of 1.96 TeV at the Fermilab Tevatron Collider have been used to search for pair production of the lightest supersymmetric partner of the top quark decaying into bl (nu) over tilde. The search is performed in the ll' = e mu and mu mu final states. No evidence for this process has been found in data samples of approximately 400 pb(-1). The domain in the [M((t) over tilde (1)), M((nu) over tilde)] plane excluded at the 95% C.L. is substantially extended by this search. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)