123 resultados para POLY(ACRYLIC ACID)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of post-consumer poly(ethylene terephthalate) with aqueous solutions of sulfuric acid 7.5M was investigated in terms of temperature, time and particle size. The reaction extent reached 80% in four days at 100 degrees C and 90% in 5 hours at 135 degrees C. TPA obtained was purified and considered in the same level of quality of the commercial one after tests of elemental analysis, particle size and color. It was concluded that the hydrolysis occurred preferentially at the chain ends and superficially, having as controller mechanism the acid diffusion into the polymer structure. The shrinking-core model can explain the reaction kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four aliphatic thermoplastic poly(ester-urethane)s (PEUs) with similar molecular weights but varying polyesters molecular weight (534-1488 g/mol) were prepared from polyester diols, obtained by melt condensation of Azelaic acid and 1,9-Nonanediol, and 1,7-heptamethylene di-isocyanate (HPMDI) all sourced from vegetable oil feedstock. The thermal, and mechanical properties, and crystal structure of PEUs were investigated using DSC, TGA, DMA, tensile analysis and WAXD. For sufficiently long polyester chain, WAXD data indicated no hydrogen bonds polyethylene (PE)-like crystalline packing and for short polyester chains, small crystal domains with significant H-bonded polyamide (PA)-like packing. Crystallinity decreased with decreasing polyester molecular weights. The polymorphism of PEUs and consequently their melting characteristics were found to be largely controlled by polyester segment length. TGA of the PEUs indicated improved thermal stability with decreasing polyester chain length, suggesting a stabilization effect by urethane groups. Mechanical properties investigated by DMA and tensile analysis were found to scale predictably with the overall crystallinity of PEUs. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The layer-by-layer technique was exploited to immobilize the enzyme uricase onto indium tin oxide substrates coated with a layer of Prussian Blue. Uricase layers were alternated with either poly(ethylene imine) or poly(diallyidimethylammoniumchloride), and the resulting films were used as amperometric biosensors for uric acid. Biosensors with optimum perfomance had a limit of detection of 0.15 mu A mu mol 1(-1) cm(-2) with a linear response between 0.1 and 0.6 mu M of uric acid, which is sufficient for use in clinical tests. Bioactivity was preserved for weeks, and there was negligible influence from interferents, as detection was carried out at 0.0 V vs saturated calomel electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(styrene-co-methyl methacrylate) (PS-PMMA) ionomers with several degrees of sulfonation were synthesized and characterized by infrared, UV-vis, and NMR spectroscopies, elemental analysis, and differential scanning calorimetry (DSC). Stable Langmuir films could be produced with PS-PMMA with 3 and 6 mol % of sulfonation, while PS-PMMA 8% exhibited material loss to the water subphase, probably due to its higher solubility. Surface pressure and surface potential isotherms with PS-PMMA 3% spread onto salt-containing subphases pointed to a film behavior characteristic of the polyelectrolyte effect, where charge repulsion governs the film properties. The Langmuir-Blodgett films of this ionomer were successfully transferred onto various substrates, as confirmed by UV-vis and FTIR spectroscopies. Using cycling voltammetry, we show that LB films from PS-PMMA 3% can be applied in selective sensing of dopamine, even in the presence of interferents such as ascorbic acid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of a poly(azo)urethane by fixing CO2 in bis-epoxide followed by a polymerization reaction with an azodiamine is presented. Since isocyanate is not used in the process, it is termed clean method and the polymers obtained are named NIPUs (non-isocyanate polyurethanes). Langmuir films were formed at the air-water interface and were characterized by surface pressure vs mean molecular area per met unit (Pi-A) isotherms. The Langmuir monolayers were further studied by running stability tests and cycles of compression/expansion (possible hysteresis) and by varying the compression speed of the monolayer formation, the subphase temperature, and the solvents used to prepare the spreading polymer solutions. The Langmuir-Blodgett (LB) technique was used to fabricate ultrathin films of a particular polymer (PAzoU). It is possible to grow homogeneous LB films of up to 15 layers as monitored using UV-vis absorption spectroscopy. Higher number of layers can be deposited when PAzoU is mixed with stearic acid, producing mixed LB films. Fourier transform infrared (FTIR) absorption spectroscopy and Raman scattering showed that the materials do not interact chemically in the mixed LB films. The atomic force microscopy (AFM) and micro-Raman technique (optical microscopy coupled to Raman spectrograph) revealed that mixed LB films present a phase separation distinguishable at micrometer or nanometer scale. Finally, mixed and neat LB films were successfully characterized using impedance spectroscopy at different temperatures, a property that may lead to future application as temperature sensors. Principal component analysis (PCA) was used to correlate the data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical sensors made from nanostructured films of poly(o-ethoxyaniline) POEA and poly(sodium 4-styrene sulfonate) PSS are produced and used to detect and distinguish 4 chemicals in solution at 20 mM, including sucrose, NaCl, HCl, and caffeine. These substances are used in order to mimic the 4 basic tastes recognized by humans, namely sweet, salty, sour, and bitter, respectively. The sensors are produced by the deposition of POEA/PSS films at the top of interdigitated microelectrodes via the layer-by-layer technique, using POEA solutions containing different dopant acids. Besides the different characteristics of the POEA/PSS films investigated by UV-Vis and Raman spectroscopies, and by atomic force microscopy.. it is observed that their electrical response to the different chemicals in liquid media is very fast, in the order of seconds, systematical, reproducible, and extremely dependent on the type of acid used for film fabrication. The responses of the as-prepared sensors are reproducible and repetitive after many cycles of operation. Furthermore, the use of an "electronic tongue" composed by an array of these sensors and principal component analysis as pattern recognition tool allows one to reasonably distinguish test solutions according to their chemical composition. (c) 2007 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the microbial action in soil on poly(L-lactic acid) (PLLA) and polyvinyl chloride (PVC) films and a PLLA/PVC 7 : 3 blend, using Fourier transform infrared spectroscopy (FTIR), contact angle and scanning electron microscopy (SEM). The films (50 mu m) were obtained from the evaporation of dichloromethane solutions and buried in soil columns, in controlled conditions, for 120 days. The results showed that the surface of the PLLA films and blend became 18 and 31% more hydrophilic, respectively. The morphology of the films also changed after 120 days of microbial treatment, particularly that of the PLLA phase in the blend, confirmed by structural and conformational changes in the FTIR CO region at 12001000 cm1 and an increase in the relative intensity of the band at 1773 cm1, which was attributed to C O group vibration due to a rotational isomer in the interlamellar region (semi-ordered region). Besides the biotreated PVC presented changes in the C-Cl band at 738 cm1, due to the presence of some PVC conformational isomer. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To evaluate the hypothesis that a process of hydrofluoric acid precipitate neutralization and fatigue load cycling performed on human premolars restored with ceramic inlays had an influence on microtensile bond strength results (MTBS). Methods: MOD inlay preparations were performed in 40 premolars (with their roots embedded in acrylic resin). Forty ceramic restorations were prepared using glass-ceramic (IPS Empress). The inner surfaces of all the restorations were etched with 10% hydrofluoric acid for 60 seconds, rinsed with water and dried. The specimens were divided into two groups (N=20): 1-without neutralization; 2-with neutralization. All the restorations were silanized and adhesively cemented (self-curing and self-etching luting composite system, Multilink). Ten premolars from each group were submitted to mechanical cycling (1,400,000 cycles, 50N, 37 degrees C). After cycling, the samples were sectioned to produce non-trimmed beam specimens (vestibular dentin-restoration-lingual dentin set), which were submitted to microtensile testing. Results: Bond strength was significantly affected by the surface treatment (p<0.0001) (no neutralization > neutralization) and mechanical cycling (p<0.0001) (control > cycling) (2-way ANOVA and Tukey test, alpha=.05). Conclusion: Hydrofluoric acid precipitate neutralization appears to significantly damage the resin bond to glass-ceramic and should not be recommended. The clinical simulation of the specimens, by using mechanical cycling, is important when evaluating the ceramic-dentin bond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica wet gels were prepared from acid sonohydrolysis of tetraethoxysilane (TEOS) and additions of poly(vinyl alcohol) (PVA)-water solution. Aerogels were obtained from supercritical CO(2) extraction. The samples were studied by thermal gravimetric (TG) analysis, small-angle X-ray scattering (SAXS), and nitrogen adsorption. The structure of wet gels can be described as a mass fractal with dimension D equal to 2.0 on the whole length scale experimentally probed by SAXS, from similar to 0.3 to similar to 15 nm. Pure and low-PVA-addition wet gels exhibit an upper cutoff accounting for a finite characteristic length xi of the mass fractal structure. Additions , of PVA increase without modifying D, which was attributed to a steric effect of the polymer in the structure. The pore volume fraction of the aerogels diminishes typically about 11% with respect to that of the wet gels, although nitrogen adsorption could be underestimating some porosity. The pore size distribution of the aerogels is shifted toward the mesopore region with the additions of PVA, in a straight relationship with the increase of xi in the wet gels. The thermal stability of the pore size distribution of the aerogels was studied up to 1000 degrees C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multilayered nanostructured films have been widely investigated for electrochemical applications as modified electrodes, including the layer-by-layer (LbL) films where properties such as thickness and film architecture can be controlled at the molecular level. In this study, we investigate the electrochemical features of LbL films of poly (o-methoxyaniline; POMA) and tetrasulfonated phthalocyanines containing nickel (NiTsPc) or copper (CuTsPc). The films displayed well-defined electroactivity, with redox pairs at 156 and 347 mV vs SCE, characteristic of POMA, which allowed their use as modified electrodes for detecting dopamine and ascorbic acid at concentrations as low as 10(-5) M.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic scale theory and fractal concepts are employed in the characterization of surface morphological properties of layer-by-layer (LBL) films from poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS). The fractal dimensions are found to depend on the procedures to fabricate the POMA/PVS multilayers, particularly with regard to the drying procedures. LBL films obtained via drying in ambient air show a more homogeneous surface, compared to films dried under vacuum or a flow of nitrogen, due to a uniform rearrangement of polymer molecules during solvent evaporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical characteristics of oxidized poly(thionaphtheneindole) were investigated as a function of ambient relative humidity (r.h.). The current flowing through a pressed pellet of material between two massive gold electrodes plotted against voltage gives a wave-shaped curve with a halfwave potential at V = similar to 3 V. The current recorded at 4 V (plateau of the wave) is a sigmoidal function of r.h, with the inflexion point at similar to 60%. An interpretation of these findings is given, based on the influence of water on the dielectric constant of the material and on acid-base equilibrium between poly(thionaphtheneindole) and water, from which protons are produced. The behaviour of poly (thionaphtheneindole) as the active component of an amperometric humidity sensor is also reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The behaviour of hydrophobically modified poly(allylammonium) chloride having octyl, decyl, dodecyl and hexadecyl side chains has been studied in aqueous solution using fluorescence emission techniques. Micropolarity studies using the I-1/I-3 ratio of the vibronic bands of pyrene show that the formation of hydrophobic microdomains depends on both the length of the side chain and the polymer concentration. The I-1/I-3 ratio of the polymers with low hydrophobe content (less than 5% mel) changes substantially when reaching a certain concentration. These changes are assigned to aggregation originating from interchain interactions. This behaviour is also confirmed by the behaviour of the monomer/excimer emission intensities of pyrene- dodecanoic acid used as a probe. For polymers having dodecyl side chains and hydrophobe contents higher than 10%, aggregates are formed independently of the polymer concentration. Anisotropy measurements show that microdomains resulting from the inter- and/or intramolecular interactions are similar to those observed for cationic surfactants. Viscosity measurements show that the coil dimensions are substantially decreased for the polymers having high hydrophobe contents, indicating intramolecular associations.