99 resultados para Oxidized starch
Resumo:
The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work evaluated the physicochemical and structural properties of rice starch of the cultivars IAC 202 and IRGA 417 modified by irradiation. Starch samples were irradiated by (60)Co in doses 1, 2 and 5kGy, on a rate of 0.4kGy/h. A control not irradiated was used for comparison. The granule morphology and A-type X-ray diffraction pattern were not altered by irradiation. There was an increase in amylose content, carboxyl content and acidity with irradiation. Gamma radiation did not affect the thermal properties of IAC202, but increased gelatinization temperature of IRGA417, in the higher dose (5kGy). The number of long chains of amylopectin was reduced and short chains were increased for IAC202, whereas for IRGA 417, the opposite was observed, probably due to cross-linking of starch chains. Starches had their physicochemical and structural properties modified by irradiation differently.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The oxidized cassava starch is widely used in various industrial sectors, the major textile, paper and more recently by the food industry due to its characteristics, such as expansion property to baking. This study aimed to develop a modification of cassava starch by reaction with hydrogen peroxide and lactic acid, with two different types of drying, in the sun and in oven dried, in order to develop the expansion with increase of carboxyl groups and to evaluate differences between the types of drying and compare them with Expandex® starch and pre-gelatinized. The results indicated an increase in the rate of expansion of the modified starch dry in the sun, however the results of the content carboxylic groups haven't indicated the relationship with their rate expansion.
Resumo:
Starch is one of the most important sources of reserve of carbohydrate in plants and the main source in the human diet due to its abundance in the nature. There no other food ingredient that can be compared with starch in terms of sheer versatility of application in the food industry. Unprocessed native starches are structurally too weak and functionally too restricted for application in today’s advanced food and industrial technologies. The main objective of this study was to compare the thermal behavior of native cassava starch and those treated with hydrogen peroxide, as well as those treated with hydrogen peroxide and ferrous sulfate. The cassava starch was extracted from cassava roots (Manihot esculenta, Crantz) and treated by standardized hydrogen peroxide (H2 O2 ) solutions at 1, 2 and 3% (with or without FeSO4 ). Investigated by using they are thermoanalytical techniques: thermogravimetry - TG, differential thermal analysis – DTA and differential scanning calorimetry - DSC, as well as optical microscopy and X-ray powder diffractometry. The results showed the steps of thermal decomposition, changes in temperatures and in gelatinization enthalpy and small changes in crystallinity of the granules.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)