95 resultados para Optimal Sampling Time


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with a system that describes an electrical circuitcomposed by a linear system coupled to a nonlinear one involving a tunneldiode in a flush-and-fill circuit. One of the most comprehensive models for thiskind of circuits was introduced by R. Fitzhugh in 1961, when taking on carebiological tasks. The equation has in its phase plane only two periodic solutions,namely, the unstable singular point S0 and the stable cycle Γ. If the system isat rest on S0, the natural flow of orbits seeks to switch-on the process by going- as time goes by - toward its steady-state, Γ. By using suitable controls it ispossible to reverse such natural tendency going in a minimal time from Γ toS0, switching-off in this way the system. To achieve this goal it is mandatorya minimal enough strength on controls. These facts will be shown by means ofconsiderations on the null control sets in the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.