217 resultados para OHMIC DISSIPATION
Resumo:
Pb1- xCaxTiO3 thin films with x = 0.24 composition were prepared by the polymeric precursor method on Pt/Ti/SiO2/Si substrates. The surface morphology and crystal structure, and the ferroelectric and dielectric properties of the films were investigated. X-ray diffraction patterns of the films revealed their polycrystalline nature. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness. The multilayer Pb1-xCaxTO3 thin films were granular in structure with a grain size of approximately 60-70 nm. The dielectric constant and dissipation factor were, respectively, 174 and 0.04 at a 1 kHz frequency. The 600-nm thick film showed a current density leakage in the order of 10(-7) A/cm(2) in an electric field of about 51 kV/cm. The C-V characteristics of perovskite thin films showed normal ferroelectric behavior. The remanent polarization and coercive field for the deposited films were 15 muC/cm(2) and 150 kV/cm, respectively. (C) 2001 Kluwer Academic Publishers.
Resumo:
The dielectric permittivity of Na0.80K0.20NbO3 ceramic was investigated by impedance spectroscopy. The dielectric characterization was performed from room temperature to 800 degreesC, in the frequency range 5 Hz-13 MHz. The bulk permittivity was derived by the variation of the imaginary part of the impedance as a function of reciprocal angular frequency. The permittivity values as a function of temperature showed two maxima. The first maximum is very similar at 200degreesC and the second one positioned at around 400degreesC, which was associated to Curie's temperature. The evolution of the complex permittivity as a function of frequency and temperature was investigated. At low frequency dispersion was investigated in terms of dielectric loss. The Na0.80K0.20NbO3 showed a dissipation factor between 5 and 40 over a frequency range from 1 to 10(2) kHz. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
SrTiO3 thin films were prepared by the polymeric precursor method and deposited by spin-coating onto Pt/Ti/SiO2/Si(100) substrates. The spin-coated films heat treated at 700 degrees C were crack-free, dense, and homogeneous. Microstructural and morphological evaluations were followed by grazing incident X-ray, scanning electron microscopy and atomic force microscopy. Dielectric studies indicated a dielectric constant of about 475, which is higher than that of ceramic SrTiO3, and a factor dissipation of about 0.050 at 100 kHz. SrTiO3 thin films were found to have paraelectric properties with C-V characteristics. (C) 2000 Kluwer Academic Publishers.
Resumo:
In this work, an analysis of the natural convection flow caused by heat sources dissipating energy at a constant rate simulating electronic components mounted at the bottom surface of a cavity symmetrically cooled from the sides and insulated at the top is performed. This problem was studied numerically and experimentally for several aspect ratios (height/width), for different levels of dissipation in the sources, and for different side wall temperatures. Temperature and velocity fields were determined as well as the temperature variation along the surface where the sources are mounted and the average Nusselt number in the source surfaces. Numerical and experimental results were found to agree.
Resumo:
It is known that the dielectric properties of BaTiO3 (BT) are strongly dependent on its grain size. Coarse-grained ceramics of pure BT showed lower dielectric constant at room temperature then fine grained. Many authors considered that when the grain size is lower than 700 nm, the lattice of BT changes from tetragonal to pseudocubic, and the dielectric constant value is very low. In the doped BT this effect is more complex, because it is necessary to consider also the influence of dopants. The grain size effect on the structure and dielectric properties of niobium-doped barium titanate was investigated. Niobium-doped barium titanate was prepared from powders obtained by doping of commercial barium titanate and from organometallic complex using citrates as precursors (Pechini procedure). The crystal and microstructure of sintered niobium-doped barium titanate were determined. Dielectric constant and dissipation factor were measured. The observation confirmed that the structure and properties are strongly dependent on grain size. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Ferroelectric SrBi2Nb2O9 (SBN) thin films were prepared by the polymeric precursors method and deposited by spin coating onto Pt/Ti/SiO2/Si substrate and crystallized using a domestic microwave oven. It was studied the influence of the heat flux direction and the duration of the thermal treatment on the films crystallization. An element with high dielectric loss, a SiC susceptor, was used to absorb the microwave energy and transfers the heat to the film. Influence of the susceptor position to the sample crystallization was verified, the susceptor was, placed or below the substrate or above the film. The SBN perovskite phase was observed after a thermal treatment at 700 degreesC for 10 min when the susceptor was placed below the substrate and for 30 min when the susceptor was placed above the film. Electrical measurements revealed that the film crystallized at 700 degreesC for 10 min, with the susceptor placed below the film, presented dielectric constant, dielectric loss, remanent polarization and coercive field of, 67, 0.011, 4.2 muC/cm(2) and 27.5 kV/cm, respectively. When the films were crystallized at 700 degreesC for 30 min, with the susceptor placed above the film, the dielectric constant was 115 and the dissipation factor was around of 0.033, remanent polarization and coercive field were 10.8 muC/cm(2) and 170 kV/cm, respectively. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Despite the great importance of ion transport, most of the widely accepted models and theories are valid only in the not very practical limit of low concentrations. Aiming to extend the range of applicability to moderate concentrations, a number of modified models and equations (some approximate, some fundamented on different assumptions, and some just empirical) have been reported. In this work, a general treatment for the electrical conductivity of ionic solutions has been developed, considering the electrical conductivity as a transport phenomenon governed by dissipation and feedback. A general expression for the dependence of the specific conductivity on the solution viscosity (and indirectly on concentration), from which the whole conductivity curve can be obtained, has been derived. The validity of this general approach is demonstrated with experimental results taken from the literature for aqueous and nonaqueous solutions of electrolytes.
Resumo:
The non-ohmic properties of the 98.90% SnO2+(1-x)%CoO+0.05% Cr2O3+0.05% Nb2O5+x% MnO2 varistor system (all of them in mol %), as well as the influence of the oxidizing and reducing atmosphere on this system were studied in this work. Experimental evidence indicates that the electrical properties of the varistor depend on the defects that occur at the grain boundary and on the adsorbed oxygen species such as O''(2), O'(2), O in this region. Thermal treatments at 900 degreesC in oxygen and nitrogen atmospheres indicated such a dependence with the values of the non-linearity coefficient (alpha) increasing under oxygen atmosphere, being reduced in nitrogen atmosphere and restored after a new treatment in oxygen atmosphere, presenting a reversibility in the process. EDS analysis accomplished by SEM showed the distribution of the oxides in the varistor matrix. (C) 2002 Kluwer Academic Publishers.
Resumo:
ZnO has the characteristic of presenting an intermediate value for the effective 3 eV barrier at room temperature. ZnO ceramics are applied in high-voltage systems or circuits. Attempts were made to reduce the number of effective barriers in the system by adding large particles of ZnO to the varistor composition. This procedure reduced the breakdown field of the varistors by values up to 90% lower than those initially obtained, and produced nonlinear coefficients as low as 20. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
A methodology to recover the non-ohmic properties of ZnO based varistors after degradation with long and short duration pulses was proposed in this work. The basic idea consists in submitt the degraded ceramics at different temperatures and oxygen flows. Thermal treatment at 900 degrees C for 2 h with oxygen flow of 15 l/h allowed to obtain better non-linear coefficient (alpha= 52.5) compared to the standard sample. Rietveld refinement showed that with the thermal treatment, the oxygen species and the beta-Bi2O3 phase, lost in the degradation process, are recovered in the grain boundary.
Resumo:
By using the long-wavelength approximation, a system of coupled evolution equations for the bulk velocity and the surface perturbations of a Benard-Marangoni system is obtained. It includes nonlinearity, dispersion, and dissipation, and it can be interpreted as a dissipative generalization of the usual Boussinesq system of equations. As a particular case, a strictly dissipative version of the Boussinesq system is obtained.
Resumo:
A self-consistent equilibrium calculation, valid for arbitrary aspect ratio tokamaks, is obtained through a direct variational technique that reduces the equilibrium solution, in general obtained from the 2D Grad-Shafranov equation, to a 1D problem in the radial flux coordinate rho. The plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schluter and the neoclassical ohmic and bootstrap currents. An iterative procedure is introduced into our code until the flux surface averaged toroidal current density (J(T)), converges to within a specified tolerance for a given pressure profile and prescribed boundary conditions. The convergence criterion is applied between the (J(T)) profile used to calculate the equilibrium through the variational procedure and the one that results from the equilibrium and given by the sum of all current components. The ohmic contribution is calculated from the neoclassical conductivity and from the self-consistently determined loop voltage in order to give the prescribed value of the total plasma current. The bootstrap current is estimated through the full matrix Hirshman-Sigmar model with the viscosity coefficients as proposed by Shaing, which are valid in all plasma collisionality regimes and arbitrary aspect ratios. The results of the self-consistent calculation are presented for the low aspect ratio tokamak Experimento Tokamak Esferico. A comparison among different models for the bootstrap current estimate is also performed and their possible Limitations to the self-consistent calculation is analysed.
Resumo:
This paper reports on the measurements of transport properties of high crystalline quality Sn doped In2O3 nanobelts. The samples presented metallic conduction in a large range of temperatures; however, at low temperatures, the resistivity showed a slight increase and the current-voltage curves showed a tendency to saturate even in the low-voltage range. From these observations, we discuss some arguments on the possibility of low dimensional conducting channels as the main responsible for the conduction at low temperatures. Additionally, we present an alternative technique for production of low resistance ohmic contacts, which can be further used in devices' construction. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Barium strontium titanate (Ba0.65Sr0.35TiO3) nanocrystalline thin films, which were produced by the soft chemical method, were crystallized at low temperature using a domestic microwave oven. A SiC susceptor were used to absorb the microwave energy and rapidly transfer the heat to the film. Low microwave power and short time have been used. The films obtained are crack-free, well-adhered, and fully crystallized. The microstructure displayed a polycrystalline nature with nanograin size. The metal-BST-metal structure of the thin films treated at 700 degrees C show food electric properties. The ferroelectric nature of the BST35 thin film was indicated by buttertly- shaped C-V curves. The capacitance-frequency curves reveal that the dielectric constant may reach a value up to 800 at 100kHz. The dissipation factor was 0.01 at 100kHz. The charge storage density as function of applied voltage graph showed that the charge storage densities are suitable for use in trench type 64 Mb ( 1-5 mu C/cm(2) and 265 Mb (2-11 mu C/cm(2)) DRAMs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The BBT films were prepared by a spin-coating process from the polymeric precursor method (Pechini process). In order to study the influence of the temperature on the BBT microstructure and electrical properties, the films were deposited on platinum coated silicon substrates and annealed from 700degreesC to 800degreesC for 2 hours in oxygen atmosphere. The crystallinity of the films was examined by X-ray diffraction while the surface morphology was analysed by atomic force microscope. The dielectric properties and dissipation factor of BaBi2Ta2O9 films at 1 MHz were observed. The polarization-electric field hysteresis loops revealed the ferroelectric characteristics of BaBi2Ta2O9 thin films.