174 resultados para Nonplanar cationic porphyrins
Resumo:
An on-line dialysis flow system coupled to inductively coupled plasma mass spectrometry to determine trace elements in serum samples by isotope dilution is presented. Isotope dilution was performed on samples incubated with enriched Cu-65, Zn-66, Se-77 and Pb-206 for 24 h at 36degreesC prior to dialysis to quantified total element concentrations. The sample and acceptor solutions flowed through the dialysis unit with cellophane membrane placed in between the compartments. The serum sample (1 mL) was left to recycle in a closed path while the acceptor solution was continuously pumped along the dialyzer channel and through a cationic AG50W X-8 resin column. After 10 min, around 70% of Na, K and Cl migrate from the sample. Three replicate injections of 0.1 mL were performed for the clean sample after each separation step. The on-line coupling of the dialyzer to ICP-MS allowed isotope dilution for total element determination either in the cleaned sample or by eluting the cations retained in the resin to be carried out. Results demonstrated no matrix effects from alkaline elements or spectral interference from ArNa+ on Cu-63, ArCl+ on Se-77 and (SO2+)-S-34 on Zn-66. The precision of isotope ratio measurements for Cu and Zn was around 1% and for Se and Pb was around 2.5%. The values found for the reference serum sample IMEP-17 were in good agreement with the certified values for Cu, Zn and Se.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Possible molecular mechanisms of the gas-phase ion/molecule reaction of VO2+ in its lowest singlet and triplet states ((1)A(1)/(3)A '') with propyne have been investigated theoretically by density functional theory (DFT) methods. The geometries, energetic values, and bonding features of all stationary and intersystem crossing points involved in the five different reaction pathways (paths 1-5), in both high-spin (triplet) and low-spin (singlet) surfaces, are reported and analyzed. The oxidation reaction starts by a hydrogen transfer from propyne molecule to the vanadyl complex, followed by oxygen migration to the hydrocarbon moiety. A hydride transfer process to the vanadium atom opens four different reaction courses, paths 1-4, while path 5 arises from a hydrogen transfer process to the hydroxyl group. Five crossing points between high- and low-spin states are found: one of them takes place before the first branching point, while the others occur along path 1. Four different exit channels are found: elimination of hydrogen molecule to yield propynaldehyde and VO+ ((1)Sigma/(3)Sigma); formation of propynaldehyde and the moiety V-(OH2)(+); and two elimination processes of water molecule to yield cationic products, Prod-fc(+) and Prod-dc(+) where the vanadium atom adopts a four- and di-coordinate structure, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Both human and bovine prothrombin fragment 2 (the second kringle) have been cocrystallized separately with human PPACK (D-Phe-Pro-Arg)-thrombin, and the structures of these noncovalent complexes have been determined and refined (R = 0.155 and 0.157, respectively) at 3.3-Å resolution using X-ray crystallographic methods. The kringles interact with thrombin at a site that has previously been proposed to be the heparin binding region. The latter is a highly electropositive surface near the C-terminal helix of thrombin abundant in arginine and lysine residues. These form salt bridges with acidic side chains of kringle 2. Somewhat unexpectedly, the negative groups of the kringle correspond to an enlarged anionic center of the lysine binding site of lysine binding kringles such as plasminogens K1 and K4 and TPA K2. The anionic motif is DGDEE in prothrombin kringle 2. The corresponding cationic center of the lysine binding site region has an unfavorable Arg70Asp substitution, but Lys35 is conserved. However, the folding of fragment 2 is different from that of prothrombin kringle 1 and other kringles: the second outer loop possesses a distorted two-turn helix, and the hairpin β-turn of the second inner loop pivots at Val64 and Asp70 by 60°. Lys35 is located on a turn of the helix, which causes it to project into solvent space in the fragment 2-thrombin complex, thereby devastating any vestige of the cationic center of the lysine binding site. Since fragment 2 has not been reported to bind lysine, it most likely has a different inherent folding conformation for the second outer loop, as has also been observed to be the case with TPA K2 and the urokinase kringle. The movement of the Val64-Asp70 β-turn is most likely a conformational change accompanying complexation, which reveals a new heretofore unsuspected flexibility in kringles. The fragment 2-thrombin complex is only the second cassette module-catalytic domain structure to be determined for a multidomain blood protein and only the third domain-domain interaction to be described among such proteins, the others being factor Xa without a Gla domain and Ca2+ prothrombin fragment 1 with a Gla domain and a kringle. © 1993 American Chemical Society.
Resumo:
A flow-injection system with a Chelite-S® cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl2, in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury, to the flow cell in the forward direction or removes the residue from reactor/gas liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h-1 (50.0 500 ng l-1), consuming about 10 ml sample and 5 mg SnCl2 per determination. The detection limit is 0.8 ng l-1 and the relative standard deviation (RSD) (n = 12) of a 76.7 ng l-1 sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found. (C) 2000 Elsevier Science B.V.
Resumo:
Heavy metal oxide (HMO) glasses have received special attention due to their optical, electrical and magnetic properties. The problem with these glasses is their corrosive nature. In this work, three ceramic crucibles (Al 2O 3, SnO 2 and ZrO 2) were tested in the melting of the system 40 PbO-35 BiO 1.5-25 GaO 1.5 (cation-%). After glass melting, crucibles were transversally cut and analyzed by scanning electronic microscopy (SEM), coupled to microanalysis by energy dispersive spectroscopy (EDS). Results indicated that zirconia crucibles presented the highest corrosion, probably due to its smallest grain size. Tin oxide crucibles presented a low corrosion with small penetration of the glass into the crucible. This way, these crucibles are an interesting alternative to melt corrosive glasses in instead of gold or platinum crucibles. It is important to emphasize the lower cost of tin oxide crucibles, compared to gold or platinum ones.
Resumo:
Human platelet-derived growth factor (PDGF) was purified from lysates of clinically outdated human platelets by ionic exchange chromatography in CM-Sepharose. The eluated fraction was submitted to the Immunoblot/Slot Blot assay using anti-PDGF-AA and anti-PDGF-BB polyclonal antibodies and was evaluated as to its biological activity through the test of [H 3]-thymidine incorporation in NIH/3T3 cell line fibroblasts in culture. The Immunoblot/Slot Blot assay using anti-PDGF-AA and anti-PDGF-BB antibodies proved the presence of the PDGF in chromatographic cationic fraction. The comparison of biological activities between fiblobrast stimulation assay using recombinant PDGF-AB and partially purified PDGF was demonstrated in 165.796 and 157.567 cpm, respectively. This result, proved the potent mitogenic effect of partially purified PDGF and consequently their evidence about the wound healing activity.
Resumo:
The methacrylic copolymer functionalized with the azo chromophore 4-[N-ethyl-N-(2-hydroxiethyl)]-amino-2′-chloro-4-nitroazobenzene (MMADR13), in its polyelectrolyte form, can be used to fabricate thin films by the layer-by-layer (LbL) technique just if one alternates this anionic polyelectrolyte with a cationic polyelectrolyte such as poly(allylamine hydrochloride) (PAH). Since PAH does not present any particular optical functionality, the main final film feature will came from the side chain DR13 azo-chromophore group due to its large nonlinear optical properties and photoisomerization capabilities. This work reports the electrooptic activity of MMADR13/DR13 LBL films, which arises from the high hiperpolarizability about the azo side chain group.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new method for high-resolution analyses of hair surface charge density under ambient conditions is presented in this paper. Electrostatic force microscopy (EFM) is used here to analyze changes in surface charge density in virgin hair, bleached hair, and hair treated with a cationic polymer. The atomic force microscopy technique is used concomitantly to analyze morphological changes in hair roughness and thickness. The EFM images depict exactly how the polymer is distributed on the surface of the hair fiber. The EFM's powerful analytical tools enabled us to evaluate the varying degrees of interaction between the hair fiber surface charge density and the cationic polymer. The surface charge density and the polymer's distribution in the hair fibers are presented in the light of EFM measurements. © 2006 Society of Cosmetic Scientists and the Socièété Française de Cosmétologie.
Resumo:
The cationic polysaccharide chitosan has been widely used for non-viral transfection in vitro and in vivo and has many advantages over other polycations. Chitosan is biocompatible and biodegradable and protects DNA against DNase degradation. However following administration the ChitosanDNA polyplexes must overcome a series of barriers before DNA is delivered to the cell nucleus. This paper describes the most important parameters involved in the chitosan-DNA interaction and their effects of on the condensation, shape, size and protection of DNA. Strategies developed for chitosanDNA polyplexes to avoid non-specific interaction with blood components and to overcome intracellular obstacles as the crossing of die cell membrane, endosomal escape and nuclear import are presented. © 2006 American Chemical Society.
Resumo:
Deposits formed on the surface of. paper were analysed in order to identify the sources of the defects, as well as to solve the problems associated with performance and adjustments at the wet end of the paper forming process. Standard paper samples containing deposits were collected and analysed by comparing the microstructure and composition of the deposit with paper regions adjacent to it. Optical microscopy (OM). energy dispersive X-ray microanalysis (EDX) X-ray powder diffraction (XRD). thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were the techniques used in this study. The results obtained from the EDX, XRD. and TG techniques allowed concluding that the calcium carbonate content in the farm of calcite is 1.6 times higher in the formed deposit them the quantity expected in the standard paper composition. The paper sample microstructure revealed by the SEM images indicates the presence of irregular spherical aggregates up to 20μm in diameter in the deposit region. containing larger amount of calcium carbonate as well as in the regions adjacent to the deposit. These spherical aggregates seem to be absorbed and integrated into the pulp fibres and present characteristics similar to those of partially cooked cationic starch. The analysed deposits are characterised by a dense and thick substance, forming a plate with highly adhesive property. This adhesive substance has a characteristic similar to glue with a large amount of organic matter due to the high weight loss shown by the TG curve. The results are consistent with the interaction ofparticles of negatively charged calcium carbonate and cationic starch, forming sterically stabilized deposits, which firmly adhere to the paper microstructure.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A2 (PLA2s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing Mr ∼ 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2s from snake venoms, MTX-I belonging to Asp49 PLA2 class, enzymatically active, and MTX-II to Lys49 PLA2s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA2 and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA2s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA2 proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. © 2008 Elsevier Inc. All rights reserved.