207 resultados para Nonlinear system modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A constructive heuristic algorithm (CHA) to solve distribution system planning (DSP) problem is presented. The DSP is a very complex mixed binary nonlinear programming problem. A CHA is aimed at obtaining an excellent quality solution for the DSP problem. However, a local improvement phase and a branching technique were implemented in the CHA to improve its solution. In each step of the CHA, a sensitivity index is used to add a circuit or a substation to the distribution system. This sensitivity index is obtained by solving the DSP problem considering the numbers of circuits and substations to be added as continuous variables (relaxed problem). The relaxed problem is a large and complex nonlinear programming and was solved through an efficient nonlinear optimization solver. Results of two tests systems and one real distribution system are presented in this paper in order to show the ability of the proposed algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engineers often face the challenge of reducing the level of vibrations experienced by a given payload or those transmitted to the support structure to which a vibrating source is attached. In order to increase the range over which vibrations are isolated, soft mounts are often used in practice. The drawback of this approach is the static displacement may be too large for reasons of available space for example. Ideally, a vibration isolator should have a high-static stiffness, to withstand static loads without too large a displacement, and at the same time, a low dynamic stiffness so that the natural frequency of the system is as low as possible which will result in an increased isolation region. These two effects are mutually exclusive in linear isolators but can be overcome if properly configured nonlinear isolators are used. This paper is concerned with the characterisation of such a nonlinear isolator comprising three springs, two of which are configured to reduce the dynamic stiffness of the isolator. The dynamic behaviour of the isolator supporting a lumped mass is investigated using force and displacement transmissibility, which are derived by modelling the dynamic system as a single-degree-of-freedom system. This results in the system dynamics being approximately described by the Duffing equation. For a linear isolator, the dynamics of the system are the same regardless if the source of the excitation is a harmonic force acting on the payload (force transmissibility) or a harmonic motion of the base (displacement transmissibility) on which the payload is mounted. In this paper these two expressions are compared for the nonlinear isolator and it is shown that they differ. A particular feature of the displacement transmissibility is that the response is unbounded at the nonlinear resonance frequency unless the damping in the isolator is greater than some threshold value, which is not the case for force transmissibility. An explanation for this is offered in the paper. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bolted joints are a form of mechanical coupling largely used in machinery due to their reliability and low cost. Failure of bolted joints can lead to catastrophic events, such as leaking, train derailments, aircraft crashes, etc. Most of these failures occur due to the reduction of the pre-load, induced by mechanical vibration or human errors in the assembly or maintenance process. This article investigates the application of shape memory alloy (SMA) washers as an actuator to increase the pre-load on loosened bolted joints. The application of SMA washer follows a structural health monitoring procedure to identify a damage (reduction in pre-load) occurrence. In this article, a thermo-mechanical model is presented to predict the final pre-load achieved using this kind of actuator, based on the heat input and SMA washer dimension. This model extends and improves on the previous model of Ghorashi and Inman [2004, "Shape Memory Alloy in Tension and Compression and its Application as Clamping Force Actuator in a Bolted Joint: Part 2 - Modeling," J. Intell. Mater. Syst. Struct., 15:589-600], by eliminating the pre-load term related to nut turning making the system more practical. This complete model is a powerful but complex tool to be used by designers. A novel modeling approach for self-healing bolted joints based on curve fitting of experimental data is presented. The article concludes with an experimental application that leads to a change in joint assembly to increase the system reliability, by removing the ceramic washer component. Further research topics are also suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we use a nonlinear control based on Optimal Linear Control. We used as mathematical model a Duffing equation to model a supporting structure for an unbalanced rotating machine with limited power (non-ideal motor). Numerical simulations are performed for a set control parameter (depending on the voltage of the motor, that is, in the static and dynamic characteristic of the motor) The interaction of the non-ideal excitation with the structure may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the system. Chaotic behavior is obtained for values of the parameters. Then, the proposed control strategy is applied in order to regulate the chaotic behavior, in order to obtain a periodic orbit and to decrease its amplitude. Both methodologies were used in complete agreement between them. The purpose of the paper is to give suggestions and recommendations to designers and engineers on how to drive this kind of system through resonance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Hill's equations-even in the linear original version are a describer of phenomenon having chaotic flavor, giving sometimes very unusual situations. The theory of the so called intervals of instability in the equation provides the precise description for most of these phenomena. Considerations on nonlinearities into the Hill's equation is a quite recent task. The linearized version for almost of these systems it reduces to the Hill's classical linear one. In this paper, some indicative facts are pointed out on the possibility of having the linear system stabilizable and/or exactly controllable. As consequence of such an approach we get results having strong classical aspects, like the one talking about location of parameters in intervals of stability. A result for nonlinear proper periodic controls, is considered too. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the linear optimal control technique for reducing the chaotic movement of the micro-electro-mechanical Comb Drive system to a small periodic orbit. We analyze the non-linear dynamics in a micro-electro-mechanical Comb Drive and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This technique is applied in analyzes the nonlinear dynamics in an MEMS Comb drive. The simulation results show the identification by linear optimal control is very effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The autonomic dysfunction stands out among the complications associated to diabetes mellitus (DM) and may be evaluated through the heart rate variability (HRV), a noninvasive tool to investigate the autonomic nervous system that provides information of health impairments and may be analyzed by using linear and nonlinear methods. Several studies have shown that HRV measured in a linear form is altered in DM. Nevertheless, a few studies investigate the nonlinear behavior of HRV. Therefore, this study aims at gathering information regarding the autonomic changes in subjects with DM identified by nonlinear analysis of HRV.Methods: For that, searches were performed on Medline, SciELO, Lilacs and Cochrane databases using the crossing between the key-words: diabetic autonomic neuropathy, autonomic nervous system, diabetes mellitus and heart rate variability. As inclusion criteria, articles published on a period from 2000 to 2010 with DM type land type II population which assessed the autonomic nervous system by nonlinear indices HRV were considered.Results: The electronic search resulted in a total of 1873 references with the exclusion of 1623 titles and abstracts and from the 250 abstracts remaining, 8 studies were selected to the final analysis that completed the inclusion criteria.Conclusions: In general, the analysis showed that the nonlinear techniques of HRV allowed detecting autonomic changes in DM. The methods of nonlinear analysis are indicated as a possible tool to be used for early diagnosis and prognosis of autonomic dysfunction in DM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using variational and numerical solutions we show that stationary negative-energy localized (normalizable) bound states can appear in the three-dimensional nonlinear Schrodinger equation with a finite square-well potential for a range of nonlinearity parameters. Below a critical attractive nonlinearity, the system becomes unstable and experiences collapse. Above a limiting repulsive nonlinearity, the system becomes highly repulsive and cannot be bound. The system also allows nonnormalizable states of infinite norm at positive energies in the continuum. The normalizable negative-energy bound states could be created in BECs and studied in the laboratory with present knowhow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Properties of localized states on array of BEC confined to a potential, representing superposition of linear and nonlinear optical lattices are investigated. For a shallow lattice case the coupled mode system has been derived. We revealed new types of gap solitons and studied their stability. For the first time a moving soliton solution has been found. Analytical predictions are confirmed by numerical simulations of the Gross-Pitaevskii equation with jointly acting linear and nonlinear periodic potentials. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We shall consider a coupled nonlinear Schrodinger equation- Bloch system of equations describing the propagation of a single pulse through a nonlinear dispersive waveguide in the presence of resonances; this could be, for example, a doped optical fibre. By making use of the integrability of the dynamic equations, we shall apply the finite-gap integration method to obtain periodic solutions for this system. Next, we consider the problem of the formation of solitons at a sharp front pulse and, by means of the Whitham modulational theory, we derive the amplitude and velocity of the largest soliton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the soliton matrices corresponding to an arbitrary number of higher-order normal zeros for the matrix Riemann-Hilbert problem of arbitrary matrix dimension, thus giving the complete solution to the problem of higher-order solitons. Our soliton matrices explicitly give all higher-order multisoliton solutions to the nonlinear partial differential equations integrable through the matrix Riemann-Hilbert problem. We have applied these general results to the three-wave interaction system, and derived new classes of higher-order soliton and two-soliton solutions, in complement to those from our previous publication [Stud. Appl. Math. 110, 297 (2003)], where only the elementary higher-order zeros were considered. The higher-order solitons corresponding to nonelementary zeros generically describe the simultaneous breakup of a pumping wave (u(3)) into the other two components (u(1) and u(2)) and merger of u(1) and u(2) waves into the pumping u(3) wave. The two-soliton solutions corresponding to two simple zeros generically describe the breakup of the pumping u(3) wave into the u(1) and u(2) components, and the reverse process. In the nongeneric cases, these two-soliton solutions could describe the elastic interaction of the u(1) and u(2) waves, thus reproducing previous results obtained by Zakharov and Manakov [Zh. Eksp. Teor. Fiz. 69, 1654 (1975)] and Kaup [Stud. Appl. Math. 55, 9 (1976)]. (C) 2003 American Institute of Physics.