149 resultados para Nitric oxide synthase 3 polymorphisms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmania chagasi, which causes visceral leishmaniasis in South America, is an obligate intracellular protozoan. Production of nitric oxide by macrophages during the inflammatory response is one of the main microbicidal mechanisms against this parasite. The goal of this study was to evaluate whether L. chagasi infection causes DNA damage in peripheral blood and spleen cells of Balb/c mice and whether such damage may be related to NO production. Balb/c mice were either infected with L chagasi or maintained as controls. The single-cell gel electrophoresis (comet) assay was used to measure DNA damage in peripheral blood and spleen cells, and the Griess reaction was used to measure NO production in the spleen. L chagasi infection induced DNA damage in peripheral blood and spleen cells of infected mice. Macrophages from the control group, challenged with L. chagasi, showed significantly (p < 0.05) greater NO production, compared to non-challenged cells. Treatment of spleen cells with N(G)-monomethyl-L-arginine (LNMMA) caused a significant reduction of NO production and DNA damage (p < 0.05). Our results indicate that L. chagasi induces DNA damage in the peripheral blood and spleen cells and that NO not only causes killing of the parasite but also induces DNA damage in adjacent cells. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a deep mycosis, endemic in Latin America, caused by Paracoccidioides brasiliensis. Macrophage activation by cytokines is the major effector mechanism against this fungus. This work aimed at a better understanding of the interaction between yeast cells-murine peritoneal macrophages and the cytokine signals required for the effective killing of high virulence yeast-form of P. brasiliensis. In addition, the killing effector mechanisms dependent on the generation of reactive oxygen or nitrogen intermediates were investigated. Cell preincubation with IFN-gamma or TNF-alpha, at adequate doses, resulted in effective yeast killing as demonstrated in short-term (4-h) assays. Both, IFN-gamma and TNF-alpha activation were associated with higher levels of H(2)O(2) and NO when compared to nonactivation. Treatment with catalase (CAT), a H(2)O(2) scavenger, and N(G)-monomethyl-L-arginine (L-NMMA), a nitric oxide synthase inhibitor, reverted the killing effect of activated cells. Taken together, these results suggest that both oxygen and L-arginine-nitric oxide pathways play a role in the killing of highly virulent P. brasiliensis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim. To establish a protocol for the early introduction of inhaled nitric oxide (iNO) therapy in children with acute respiratory distress syndrome (ARDS) and to assess its acute and sustained effects on oxygenation and ventilator settings.Patients and Methods. Ten children with ARDS, aged 1 to 132 months (median, 11 months), with arterial saturation of oxygen <88% while receiving a fraction of inspired oxygen (FiO(2)) 0.6 and a positive end-expiratory pressure of greater than or equal to 10 cm H2O were included in the study. The acute response to iNO was assessed in a 4-hour dose-response test, and positive response was defined as an increase in the PaO2/FiO(2) ratio of 10 mmHg above baseline values. Conventional therapy was not changed during the test. In the following days, patients who had shown positive response continued to receive the lowest iNO dose. Hemodynamics, PaO2/FiO(2), oxygenation index, gas exchange, and methemoglobin levels were obtained when needed. Inhaled nitric oxide withdrawal followed predetermined rules.Results. At the end of the 4-hour test, all the children showed significant improvement in the PaO2/FiO(2) ratio (63.6%) and the oxygenation index (44.9%) compared with the baseline values. Prolonged treatment was associated with improvement in oxygenation, so that FiO(2) and peak inspiratory pressure could be quickly and significantly reduced., No toxicity from methemoglobin or nitrogen dioxide was observed.Conclusion. Administration of iNO to children is safe. iNO causes rapid and sustained improvement in oxygenation without adverse effects. Ventilator settings can safely be reduced during iNO treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Endodontic chelators may extrude to apical tissues during instrumentation activating cellular events on periapical tissues. This study assessed in vitro the expression of nitric oxide (NO) concentrations by murine peritoneal macrophages after contact with MTAD (Dentsply/Tulsa, Tulsa, OK), Tetraclean (Ogna Laboratori Farmaceutici, Muggio, Italy), Smear Clear (Sybron Endo, Orange, CA), and EDTA (Biodinamica, Ibipora, PR, Brazil). Methods: Macrophage cells were obtained from Swiss mice after peritoneal lavage. Chelators were diluted in distilled water obtaining 12 concentrations, and MTT assay identified the concentrations, per group, displaying the highest cell viability (analysis of variance, p < 0.01). Selected concentrations were tested for NO expression using Griess reaction. Culture medium and lipopolysaccharide (LPS) were used as controls. Results: Analysis of variance and Tukey tests showed that all chelators displayed elevated NO concentrations compared with the negative control (p < 0.01). MTAD induced the lowest NO expression, followed by Tetraclean, EDTA, and Smear Clear. No difference was observed between MTAD and Tetraclean (p > 0.01), Tetraclean and EDTA (p > 0.01), and EDTA and Smear Clear (p > 0.01). LPS ranked similar to both EDTA and Smear Clear (p > 0.01). Conclusion: The tested endodontic chelators displayed severe proinflammatory effects on murine-cultured macrophages. Citric acid-based solutions induce lower No release than EDTA-based irrigants. (J Endod 2009;35:824-828)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the effect of a leukotriene inhibitor (MK886) on nitric oxide (NO) and hydrogen peroxide (H2O2) production by peritoneal macrophages of mice subjected to acute and chronic stress. Acute stress was induced by keeping mice immobilized in a tube for 2 h. Chronic stress was induced over a 7-day period by the same method, but with increasing duration of immobilization. The effects of MK886 were investigated in-vitro after incubation with peritoneal macrophages, and in-vivo by submitting mice to stress and treating them daily with MK886. Supernatants of macrophage cultures were collected for NO determination and adherent cells were used for H2O2 determination. Macrophages from mice submitted to acute or chronic stress showed no alterations in H2O2 production. However, macrophages of acutely and chronically stressed mice showed inhibition of NO after incubation with MK886 in-vitro. Administration of MK886 to chronically stressed mice increased generation of H2O2 and inhibited production of NO. Our data suggest an important role of leukotrienes in NO synthesis, which is important in controlling replication of several infectious agents, mainly in stressed and immunosuppressed animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)