152 resultados para Neural Network Assembly Memory Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm is presented that finds the optimal plan long-term transmission for till cases studied, including relatively large and complex networks. The knowledge of optimal plans is becoming more important in the emerging competitive environment, to which the correct economic signals have to be sent to all participants. The paper presents a new specialised branch-and-bound algorithm for transmission network expansion planning. Optimality is obtained at a cost, however: that is the use of a transportation model for representing the transmission network, in this model only the Kirchhoff current law is taken into account (the second law being relaxed). The expansion problem then becomes an integer linear program (ILP) which is solved by the proposed branch-and-bound method without any further approximations. To control combinatorial explosion the branch- and bound algorithm is specialised using specific knowledge about the problem for both the selection of candidate problems and the selection of the next variable to be used for branching. Special constraints are also used to reduce the gap between the optimal integer solution (ILP program) and the solution obtained by relaxing the integrality constraints (LP program). Tests have been performed with small, medium and large networks available in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application process of fluid fertilizers through variable rates implemented by classical techniques with feedback and conventional equipments can be inefficient or unstable. This paper proposes an open-loop control system based on artificial neural network of the type multilayer perceptron for the identification and control of the fertilizer flow rate. The network training is made by the algorithm of Levenberg-Marquardt with training data obtained from measurements. Preliminary results indicate a fast, stable and low cost control system for precision fanning. Copyright (C) 2000 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The training and the application of a neural network system for the prediction of occurrences of secondary metabolites belonging to diverse chemical classes in the Asteraceae is described. From a database containing about 604 genera and 28,000 occurrences of secondary metabolites in the plant family, information was collected encompassing nine chemical classes and their respective occurrences for training of a multi-layer net using the back-propagation algorithm. The net supplied as output the presence or absence of the chemical classes as well as the number of compounds isolated from each taxon. The results provided by the net from the presence or absence of a chemical class showed a 89% hit rate; by excluding triterpenes from the analysis, only 5% of the genera studied exhibited errors greater than 10%. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This communication proposes the use of neural networks in the prediction of residual concentrations of hydrogen peroxide from the treatment of effluents through Advanced Oxidative Processes (AOP's), in particular, the photo-Fenton process. To verify the efficiency of the oxidative process, the Chemical Oxygen Demand (COD) parameter, the values of which may be modified by the presence of oxidizing agents such as residual hydrogen peroxide, is frequently taken in account. The analysis of the H2O2 interference was performed by spectrophotometry at 450 nm wavelength, via the monitoring of the reaction of ammonia with metavanadate. The results of the hydrogen peroxide residual concentration were modeled via a feedforward neural network, with the correlation coefficients between actual and predicted values above 0.96, indicating good prediction capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Backpropagation Algorithm (BA) is the standard method for training multilayer Artificial Neural Networks (ANN), although it converges very slowly and can stop in a local minimum. We present a new method for neural network training using the BA inspired on constructivism, an alphabetization method proposed by Emilia Ferreiro based on Piaget philosophy. Simulation results show that the proposed configuration usually obtains a lower final mean square error, when compared with the standard BA and with the BA with momentum factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents an algorithm for the security control of electric power systems using control actions like generation reallocation, determined by sensitivity analysis (linearized model) and optimization by neural networks. The model is developed taking into account the dynamic network aspects. The preventive control methodology is developed by means of sensitivity analysis of the security margin related with the mechanical power of the system synchronous machines. The reallocation power in each machine is determined using neural networks. The neural network used in this work is of Hopfield type. These networks are dedicated electric circuits which simulate the constraint set and the objective function of an optimization problem. The advantage of using these networks is the higher speed in getting the solutions when compared to conventional optimization algorithms due to the great convergence rate of the process and the facility of the method parallelization. Then, the objectives are: formulate and investigate these networks implementations in determining. The generation reallocation in digital computers. Aiming to illustrate the proposed methodology an application considering a multi-machine system is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is the development of a methodology for electric load forecasting based on a neural network. Here, it is used Backpropagation algorithm with an adaptive process based on fuzzy logic. This methodology results in fast training, when compared to the conventional formulation of Backpropagation algorithm. Results are presented using data from a Brazilian Electric Company and the performance is very good for the proposal objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are several papers on pruning methods in the artificial neural networks area. However, with rare exceptions, none of them presents an appropriate statistical evaluation of such methods. In this article, we proved statistically the ability of some methods to reduce the number of neurons of the hidden layer of a multilayer perceptron neural network (MLP), and to maintain the same landing of classification error of the initial net. They are evaluated seven pruning methods. The experimental investigation was accomplished on five groups of generated data and in two groups of real data. Three variables were accompanied in the study: apparent classification error rate in the test group (REA); number of hidden neurons, obtained after the application of the pruning method; and number of training/retraining epochs, to evaluate the computational effort. The non-parametric Friedman's test was used to do the statistical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The great diversity of materials that characterizes the urban environment determines a structure of mixed classes in a classification of multiespectral images. In that sense, it is important to define an appropriate classification system using a non parametric classifier, that allows incorporating non spectral (such as texture) data to the process. They also allow analyzing the uncertainty associated to each class from the output alues of the network calculated in relation to each class. Considering these properties, an experiment was carried out. This experiment consisted in the application of an Artificial Neural Network aiming at the classification of the urban land cover of Presidente Prudente and the analysis of the uncertainty in the representation of the mapped thematic classes. The results showed that it is possible to discriminate the variations in the urban land cover through the application of an Artificial Neural Network. It was also possible to visualize the spatial variation of the uncertainty in the attribution of classes of urban land cover from the generated representations. The class characterized by a defined pattern as intermediary related to the impermeability of the urban soil presented larger ambiguity degree and, therefore, larger mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy efficiency of buildings should be a goal at the pre-design phase, though the importance of the design variables is often neglected even during the design process. Highlighting the relevance of these design variables, this research studies the relationships of building location variables with the electrical energy consumption of residential units. The following building design parameters are considered: orientation, story height and sky view factor (SVF). The consideration of the SVF as a location variable contributes to the originality of this research. Data of electrical energy consumption and users' profiles were collected and several variables were considered for the development of an Artificial Neural Network model. This model allows the determination of the relative importance of each variable. The results show that the apartments' orientation is the most important design variable for the energy consumption, although the story height and the sky view factor play a fundamental role in that consumption too. We pointed out that building heights above twenty-four meters do not optimize the energy efficiency of the apartments and also that an increasing SVF can influence the energy consumption of an apartment according to their orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of sensorless technologies is an increasing tendency on industrial drivers for electrical machines. The estimation of electrical and mechanical parameters involved with the electrical machine control is used very frequently in order to avoid measurement of all variables related to this process. The cost reduction may also be considered in industrial drivers, besides the increasing robustness of the system, as an advantage of the use of sensorless technologies. This work proposes the use of a recurrent artificial neural network to estimate the speed of induction motor for sensorless control schemes using one single current sensor. Simulation and experimental results are presented to validate the proposed approach. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A target tracking algorithm able to identify the position and to pursuit moving targets in video digital sequences is proposed in this paper. The proposed approach aims to track moving targets inside the vision field of a digital camera. The position and trajectory of the target are identified by using a neural network presenting competitive learning technique. The winning neuron is trained to approximate to the target and, then, pursuit it. A digital camera provides a sequence of images and the algorithm process those frames in real time tracking the moving target. The algorithm is performed both with black and white and multi-colored images to simulate real world situations. Results show the effectiveness of the proposed algorithm, since the neurons tracked the moving targets even if there is no pre-processing image analysis. Single and multiple moving targets are followed in real time.