152 resultados para MODIFIED GOLD ELECTRODE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A glassy carbon electrode chemically modified with nickel oxyhydroxide from a nickel hexacyanoferrate (NiHCF) film was used to determine glycerol in biodiesel by cyclic voltammetry. The modified electrode exhibited a linear response to glycerol concentration in the range from 0.05 to 0.35mmol L-1, and a detection limit of 0.030mmol L-1. The glycerol concentration found in the biodiesel sample was 0.156mmol L-1. The method developed in this study showed a recovery of (100.3±5.0)%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicyllideneiminato)oxovanadium (IV) complex ([VO(salen)]) as well as its application for ranitidine determination are described. The electrochemical behavior of the modified electrode for the electroreduction of ranitidine was investigated using cyclic voltammetry, and analytical curves were obtained for ranitidine using linear sweep voltammetry (LSV) under optimized conditions. The best voltammetric response was obtained for an electrode composition of 20% (m/m) [VO(salen)] in the paste, 0.10 mol L- 1 of KCl solution (pH 5.5 adjusted with HCl) as supporting electrolyte and scan rate of 25 mV s- 1. A sensitive linear voltammetric response for ranitidine was obtained in the concentration range from 9.9 × 10- 5 to 1.0 × 10- 3 mol L- 1, with a detection limit of 6.6 × 10- 5 mol L- 1 using linear sweep voltammetry. These results demonstrated the viability of this modified electrode as a sensor for determination, quality control and routine analysis of ranitidine in pharmaceutical formulations. © 2013 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
p-Phenylenediamine (PPD) and resorcinol (RSN) are hair dye precursors of permanent dyeing more used worldwide. The present work describes a simple and economic voltammetric sensor for simultaneous determination of both components in commercial hair dyeing and tap water at low concentrations. PPD and RSN are oxidized at + 0.17 and + 0.61 V vs. Ag/AgCl at glassy carbon electrode coated by composites of multiwall carbon nanotubes with chitosan (MWNTs-CHT/GCE), which anodic currents density normalized are 10% and 70% higher in relation to the unmodified electrode, respectively. The calibration curve for simultaneous determination of PPD and RSN showed linearity between 0.55 and 21.2 mg L-1 with detection limits of 0.79 and 0.58 mg L-1 to PPD and RSN, respectively. The relative standard deviations found for ten determinations were of 0.73 and 2.35% to 2.70 mg L-1, and 0.87 and 1.08% to 15.96 mg L-1 to PPD and RSN, respectively. The voltammetric sensor was applied to determination of PPD and RSN in tap water and commercial hair dyeing samples and the average recovery for these samples was around 97%. The products generated from PPD and RSN reaction such as was p-quinonediimine and bandrowski base were detected by LC-MS/MS and UV-vis spectrophotometry. (C) 2014 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Interest in the electronic properties of carbon nanotubes has increased in recent years. These materials can be used in the development of electrochemical sensors for the measurement and monitoring of analytes of environmental interest, such as pharmaceuticals, dyes, and pesticides. This work describes the use of homemade screen-printed electrodes modified with multi-walled carbon nanotubes (MWCNT) for the electrochemical detection of the fungicide thiram. The electrochemical characteristics of the proposed system were evaluated using cyclic voltammetry, with investigation of the electrochemical behavior of the sensor in the presence of the analyte, and estimation of electrochemical parameters including the diffusion coefficient, electron transfer coefficient (α), and number of electrons transferred in the catalytic electro-oxidation. The sensor response was optimized using amperometry. The best sensor performance was obtained in 0.1 mol L-1 phosphate buffer solution at pH 8.0, where a detection limit of 7.9 x 10-6 mol L-1 was achieved. Finally, in order to improve the sensitivity of the sensor, square wave voltammetry (SWV) was used for thiram quantification, instead of amperometry. Using SWV, a response range for thiram from 9.9 x 10-6 to 9.1 x 10-5 mol L-1 was obtained, with a sensitivity of 30948 µA mol L-1, and limits of detection and quantification of 1.6 x 10-6 and 5.4 x 10-6 mol L-1, respectively. The applicability of this efficient new alternative methodology for thiram detection was demonstrated using analyses of enriched soil samples.
Resumo:
In this work, an electrode chemically modified with polypyrrole (PCME) was employed for determination of sulfate in ethanol fuel using a FIA system. The PCME was prepared by polymerization of pyrrole at a glassy carbon electrode by means of cyclic voltammetry technique. An analytical curve from 1.0 x 10−5 to 8.0 x 10−5 mol L−1 was obtained in flow injection system based on the PCME. An amperometric sensibility of 2.3 x 10−3 A mol−1 L and a detection limit of 2.5 x 10−6 mol L−1 were achieved. The proposed method was employed for determination of sulfate ions in commercial samples of ethanol fuel. The results were in good agreement with those obtained by the ionic chromatographic method.
Resumo:
A novel nanostructured composite, azide copper octa (3-aminopropyl)octasilsesquioxane (ASCA) was incorporated into a graphite paste electrode and the electrochemical studies were conducted with cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E ) = 0.30 V and an irreversible process at 1.1 V (vs Ag/AgCl; NaCl 1.0 mol L-1 ; v = 20 mV s-1 ). The redox couple with (E ) = 0.30V presents an electrocatalytic response for determination of ascorbic acid. The modified electrode gives a linear range from 1.010-4 – 1.010-3 mol L-1 (r = 0.998) for the determination of ascorbic acid with detection limit of 6.910-5 mol L-1 and standard deviation of 2.3% for n = 3 . The amperometric sensitivity was 122.1 mA/mol L-1 for ascorbic acid. The application this electrode was tested and ascorbic acid in three commercial pharmaceutical product (Cebion, Cewin and Redoxon) have been determined.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A glassy carbon electrode chemically modified with nickel nanoparticles coupled with reversed-phase chromatography with pulsed amperometric detection was used for the quantitative analysis of furanic aldehydes in a real sample of sugarcane bagasse hydrolysate. Chromatographic separation was carried out in isocratic conditions (acetonitrile/water, 1:9) with a flow rate of 1.0 mL/min, a detection potential of -50 mV vs. Pd, and the process was completed within 4 min. The analytical curves presented limits of detection of 4.0 × 10(-7) mol/L and 4.3 × 10(-7) mol/L, limits of quantification of 1.3 × 10(-6) and 1.4 × 10(-6) mol/L, amperometric sensitivities of 2.2 × 10(6) nA mol/L and 2.7 × 10(6) nA mol/L for furfural and 5-hydroxymethylfurfural, respectively. The values obtained in this sample by the standard addition method were 1.54 ± 0.02 g/kg for 5-hydroxymethylfurfural and 11.5 ± 0.2 g/kg for furfural. The results demonstrate that this new proposed method can be used for the quick detection of furanic aldehydes without the interference of other electroactive species, besides having other remarkable merits that include excellent peak resolution, analytical repeatability, sensitivity, and accuracy.
Resumo:
A montmorillonite from Wyoming-USA was used to prepare an organo-clay complex, named 2-thiazoline-2-thiol-hexadecyltrimethylammonium-clay (TZT-HDTA-clay), for the purpose of the selective adsorption of the heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). Adsorption isotherms of Hg 2+, Pb 2+, Cd 2+, Cu 2+, and Zn 2+ from aqueous solutions as a function of the pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The organo-clay complex was very selective to Hg(II) in aqueous solution in which other metals and ions were also present. The accumulation voltammetry of Hg(II) was studied at a carbon paste electrode chemically modified with this material. The mercury response was evaluated with respect to the pH, electrode composition, preconcentration time, mercury concentration, cleaning solution, possible interferences and other variables. A carbon paste electrode modified by TZT-HDTA-clay showed two peaks: one cathodic peak at about 0.0 V and an anodic peak at 0.25 V, scanning the potential from -0.2 to 0.8 V (0.05 M KNO 3 vs. Ag/AgCl). The anodic peak at 0.25 V presents excellent selectivity for Hg(II) ions in the presence of foreign ions. The detection limit was estimated as 0.1 μg L -1. The precision of determination was satisfactory for the respective concentration level. 2005 © The Japan Society for Analytical Chemistry.