102 resultados para MAXIMUM OUTPUT POWER


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel single-phase high power factor PWM boost rectifier, featuring soft commutation of the active switches at zero-current (ZCS). It incorporates the most desirable properties of the conventional PWM and the soft-switching resonant techniques. The input current shaping is achieved with average current mode control, and continuous inductor current mode. This new PWM converter provides ZCS turn-on and turn-off of the active switches, and it is suitable for high power applications employing IGBTs. Principle of operation, theoretical analysis, a design example, and experimental results from a laboratory prototype rated at 1600 W with 400 Vdc output voltage are presented. The measured efficiency and power factor were 96.2% and 0.99 respectively, with an input current THD equal to 3.94%, for an input voltage THD equal to 3.8%, at rated load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analysis of an irreversible Otto cycle aiming to optimize the net power through ECOP and ecological function. The studied cycle operates between two thermal reservoirs of infinite thermal capacity, with internal irreversibilities derived from non-isentropic behavior of compression and expansion processes, irreversibilities from thermal resistance in heat exchangers and heat leakage from the high temperature reservoir to the low temperature reservoir. Analytical expressions are applied for the power outputs optimized by the ECOP, by the ecological function and by the maximum power criteria, in conjunction with a graphic analysis, in which some cycle operation parameters are analyzed for an increased comprehension of the effects of the irreversibilities in the optimized power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model is developed for an irreversible Brayton cycle with regeneration, inter-cooling and reheating. The irreversibility are from the thermal resistance in the heat exchangers, the pressure drops in pipes, the non-isentropic behavior in the adiabatic expansions and compressions and the heat leakage to the cold source. The cycle is optimized by maximizing the ecological function, which is achieved by the search for optimal values for the temperatures of the cycle and for the pressure ratios of the first stage compression and the first stage expansion. The advantages of using the regenerator, intercooler and reheater are presented by comparison with cycles that do not incorporate one or more of these processes. Optimization results are compared with those obtained by maximizing the power output and it is concluded that the point of maximum ecological function has major advantages with respect to the entropy generation rate and the thermal efficiency, at the cost of a small loss in power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Earth receives annually 1,5.1018 kWh of solar energy, which corresponds to 1000 times the world energy consumption in this period. This fact comes out that, besides being responsible for the maintenance of life on Earth, the solar radiation is in an inexhaustible energy source, with an enormous potential for use by systems capture and conversion into another form of energy. In many applications of low power systems that convert light directly into electricity, called photovoltaic advantageously replace other means of production processes, where its distribution is very significant. The determination of the power generated by such a system is of paramount importance for the design energy of its implementation and evaluation of the system itself. This study aims to determine a relationship between the maximum power generated by solar photovoltaic and characteristic parameters of the generator. This relationship allows to evaluate the performance of such a system. For simulations of the developed equations were used 3 photovoltaic modules with an output of 100 Wp each, and data collection was performed during one year by enrolling in addition to meteorological data, solar irradiance incident on the modules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the application and use of a methodology based on fuzzy theory and simulates its use in intelligent control of a hybrid system for generating electricity, using solar energy, photovoltaic and wind. When using a fuzzy control system, it reached the point of maximum generation of energy, thus shifting all energy generated from the alternative sources-solar photovoltaic and wind, cargo and / or batteries when its use not immediately. The model uses three variables used for entry, which are: wind speed, solar radiation and loading the bank of batteries. For output variable has to choose which of the batteries of the battery bank is charged. For the simulations of this work is used MATLAB software. In this environment mathematical computational are analyzed and simulated all mathematical modeling, rules and other variables in the system described fuzzy. This model can be used in a system of control of hybrid systems for generating energy, providing the best use of energy sources, sun and wind, so we can extract the maximum energy possible these alternative sources without any prejudice to the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS