117 resultados para M. pectoralis major


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In the past 10 years, new anticoagulants (NACs) have been studied for venous thromboembolism (VTE) prophylaxis. Objective: To evaluate the risk/benefit profile of NACs versus enoxaparin for VTE prophylaxis in major orthopedic surgery. Methods: A systematic review of double-blind randomized phase III studies was performed. The search strategy was run from 2000 to 2011 in the main medical electronic databases in any language. Independent extraction of articles was performed by 2 authors using predefined data fields, including study quality indicators. Results: Fifteen published clinical trials evaluating fondaparinux, rivaroxaban, dabigatran, and apixaban were included. Primary efficacy (any deep vein thrombosis [DVT], nonfatal pulmonary embolism, or all-cause mortality) favored fondaparinux (relative risk [RR] 0.50; 95% CI, 0.39, 0.63) and rivaroxaban (RR, 0.50; 95% CI, 0.34, 0.73) over enoxaparin, although significant heterogeneity was observed in both series. The primary efficacy of dabigatran at 220 mg, apixaban, and bemiparin were similar, with RRs of 1.02 (95% CI, 0.86, 1.20), 0.63 (95% CI, 0.39, 1.01), and 0.87 (95% CI, 0.65, 1.17), respectively. The primary efficacy of dabigatran at 150 mg (RR, 1.20; 95% CI, 1.03, 1.41), was inferior to enoxaparin. The incidence of proximal DVT favored apixaban (RR, 0.45; 95% CI, 0.27, 0.75) only. Rivaroxaban (RR, 0.45; 95% CI, 0.27, 0,77) and apixaban (RR, 0.38; 95% CI, 0.16, 0.90) produced significantly lower frequencies of symptomatic DVT. The incidence of major VTE favored rivaroxaban (RR, 0.44; 95% CI, 0.25, 0.81), only. Bleeding risk was similar for all NACs, except fondaparinux (RR, 1.27; 95% CI, 1.04, 1.55), which exhibited a significantly higher any-bleeding risk compared with enoxaparin, and apixaban (RR, 0.88; 95% CI, 0.79, 0.99), which was associated with a reduced risk of any bleeding. Alanine amino transferase was significantly lower with 220 mg of dabigatran, (RR, 0.67; 95% CI, 0.79, 0.99) than with enoxaparin. Conclusions: NACs can be considered alternatives to conventional thromboprophylaxis regimens in patients undergoing elective major orthopedic surgery, depending on clinical characteristics and cost-effectiveness. The knowledge of some differences concerning efficacy or safety profile, pointed out in this systematic review, along with the respective limitations, may be useful in clinical practice. © 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent decades, xylanases have been used in many processing industries. This study describes the xylanase production by Penicillium glabrum using brewer's spent grain as substrate. Additionally, this is the first work that reports the purification and characterization of a xylanase using this agroindustrial waste. Optimal production was obtained when P. glabrum was grown in liquid medium in pH 5.5, at 25 °C, under stationary condition for six days. The xylanase from P. glabrum was purified to homogeneity by a rapid and inexpensive procedure, using ammonium sulfate fractionation and molecular exclusion chromatography. SDS-PAGE analysis revealed one band with estimated molecular mass of 18.36 kDa. The optimum activity was observed at 60 °C, in pH 3.0. The enzyme was very stable at 50 °C, and high pH stability was verified from pH 2.5 to 5.0. The ion Mn2+ and the reducing agents β-mercaptoethanol and DTT enhanced xylanase activity, while the ions Hg2+, Zn2+, and Cu2+ as well as the detergent SDS were strong inhibitors of the enzyme. The use of brewer's spent grain as substrate for xylanase production cannot only add value and decrease the amount of this waste but also reduce the xylanase production cost. © 2013 Adriana Knob et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scope. To elucidate the morphological and biochemical in vitro effects exerted by caffeine, taurine, and guarana, alone or in combination, since they are major components in energy drinks (EDs). Methods and Results. On human neuronal SH-SY5Y cells, caffeine (0.125-2 mg/mL), taurine (1-16 mg/mL), and guarana (3.125-50 mg/mL) showed concentration-dependent nonenzymatic antioxidant potential, decreased the basal levels of free radical generation, and reduced both superoxide dismutase (SOD) and catalase (CAT) activities, especially when combined together. However, guarana-treated cells developed signs of neurite degeneration in the form of swellings at various segments in a beaded or pearl chain-like appearance and fragmentation of such neurites at concentrations ranging from 12.5 to 50 mg/mL. Swellings, but not neuritic fragmentation, were detected when cells were treated with 0.5 mg/mL (or higher doses) of caffeine, concentrations that are present in EDs. Cells treated with guarana also showed qualitative signs of apoptosis, including membrane blebbing, cell shrinkage, and cleaved caspase-3 positivity. Flow cytometric analysis confirmed that cells treated with 12.5-50 mg/mL of guarana and its combinations with caffeine and/or taurine underwent apoptosis. Conclusion. Excessive removal of intracellular reactive oxygen species, to nonphysiological levels (or antioxidative stress), could be a cause of in vitro toxicity induced by these drugs. © 2013 Fares Zeidán-Chuliá et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Brown propolis is the major type of propolis found in Cuba; its principal component is nemorosone, the major constituent of Clusia rosea floral resins. Nemorosone has received increasing attention due to its strong in vitro anti-cancer action. The citotoxicity of nemorosone in several human cancer cell lines has been reported and correlated to the direct action it has on the estrogen receptor (ER). Breast cancer can be treated with agents that target estrogen-mediated signaling, such as antiestrogens. Phytoestrogen can mimic or modulate the actions of endogenous estrogens and the treatment of breast cancer with phytoestrogens may be a valid strategy, since they have shown anti-cancer activity.Methods: The aim of the present investigation was to assess the capacity of nemorosone to interact with ERs, by Recombinant Yeast Assay (RYA) and E-screen assays, and to determine by comet assay, if the compound causes DNA-damaging in tumoral and non-tumoral breast cells.Results: Nemorosone did not present estrogenic activity, however, it inhibited the 17-β-estradiol (E2) action when either of both methods was used, showing their antiestrogenicity. The DNA damage induced by the benzophenone in cancer and normal breast cells presented negative results.Conclusion: These findings suggest that nemorosone may have therapeutic application in the treatment of breast cancer. © 2013 Camargo et al.; licensee BioMed Central Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major histocompatibility complex (MHC) in mammals codes for antigen-presenting proteins. For this reason, the MHC is of great importance for immune function and animal health. Previous studies revealed this gene-dense and polymorphic region in river buffalo to be on the short arm of chromosome 2, which is homologous to cattle chromosome 23. Using cattle-derived STS markers and a river buffalo radiation hybrid (RH) panel (BBURH5000), we generated a high-resolution RH map of the river buffalo MHC region. The buffalo MHC RH map (cR5000) was aligned with the cattle MHC RH map (cR 12000) to compare gene order. The buffalo MHC had similar organization to the cattle MHC, with class II genes distributed in two segments, class IIa and class IIb. Class IIa was closely associated with the class I and class III regions, and class IIb was a separate cluster. A total of 53 markers were distributed into two linkage groups based on a two-point LOD score threshold of ≥8. The first linkage group included 32 markers from class IIa, class I and class III. The second linkage group included 21 markers from class IIb. Bacterial artificial chromosome clones for seven loci were mapped by fluorescence in situ hybridization on metaphase chromosomes using single- and double-color hybridizations. The order of cytogenetically mapped markers in the region corroborated the physical order of markers obtained from the RH map and served as anchor points to align and orient the linkage groups. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The renin-angiotensin system (RAS) plays a major role in cardiovascular diseases in postmenopausal women, but little is known about its importance to lower urinary tract symptoms. In this study we have used the model of ovariectomized (OVX) estrogen-deficient rats to investigate the role of RAS in functional and molecular alterations in the urethra and bladder. Main methods: Responses to contractile and relaxant agents in isolated urethra and bladder, as well as cystometry were evaluated in 4-month OVX Sprague-Dawley rats. Angiotensin-converting enzyme activity and Western blotting for AT1/AT2 receptors were examined. Key findings: Cystometric evaluations in OVX rats showed increases in basal pressure, capacity and micturition frequency, as well as decreased voiding pressure. Angiotensin II and phenylephrine produced greater urethral contractions in OVX compared with Sham group. Carbachol-induced bladder contractions were significantly reduced in OVX group. Relaxations of urethra and bladder to sodium nitroprusside and BAY 41-2272 were unaffected by OVX. Angiotensin-converting enzyme activity was 2.6-fold greater (p < 0.05) in urethral tissue of OVX group, whereas enzyme activity in plasma and bladder remained unchanged. Expressions of AT1 and AT2 receptors in the urethra were markedly higher in OVX group. In bladder, AT1 receptors were not detected, whereas AT2 receptor expression was unchanged between groups. 17β-Estradiol replacement (0.1 mg/kg, weekly) or losartan (30 mg/kg/day) largely attenuated most of the alterations seen in OVX group. Significance: Prolonged estrogen deprivation leads to voiding dysfunction and urethral hypercontractility that are associated with increased ACE activity and up-regulation of angiotensin AT1/AT2 receptor in the urethral tissue. © 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objective: Antimicrobial peptides, such as beta-defensins, secreted by gingival epithelial cells, are thought to play a major role in preventing periodontal diseases. In the present study, we investigated the ability of green tea polyphenols to induce human beta-defensin (hBD) secretion in gingival epithelial cells and to protect hBDs from proteolytic degradation by Porphyromonas gingivalis.Material and Methods: Gingival epithelial cells were treated with various amounts (25-200 mu g/mL) of green tea extract or epigallocatechin-3-gallate (EGCG). The secretion of hBD1 and hBD2 was measured using ELISAs, and gene expression was quantified by real-time PCR. The treatments were also carried out in the presence of specific kinase inhibitors to identify the signaling pathways involved in hBD secretion. The ability of green tea extract and EGCG to prevent hBD degradation by proteases of P. gingivalis present in a bacterial culture supernatant was evaluated by ELISA.Results: The secretion of hBD1 and hBD2 was up-regulated, in a dose-dependent manner, following the stimulation of gingival epithelial cells with a green tea extract or EGCG. Expression of the hBD gene in gingival epithelial cells treated with green tea polyphenols was also increased. EGCG-induced secretion of hBD1 and hBD2 appeared to involve extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase. Lastly, green tea extract and EGCG prevented the degradation of recombinant hBD1 and hBD2 by a culture supernatant of P. gingivalis.Conclusion: Green tea extract and EGCG, through their ability to induce hBD secretion by epithelial cells and to protect hBDs from proteolytic degradation by P. gingivalis, have the potential to strengthen the epithelial antimicrobial barrier. Future clinical studies will indicate whether these polyphenols represent a valuable therapeutic agent for treating/preventing periodontal diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Solobacterium moorei is a volatile sulfide compound (VSC)-producing Gram-positive anaerobic bacterium that has been associated with halitosis. The aim of this study was to investigate the effects of green tea extract and its major constituent epigallocatechin-3-gallate (EGCG) on growth and severalhalitosis-related properties of S. moorei.Methods: A microplate dilution assay was used to determine the antibacterial activity of green tea extract and EGCG against S. moorei. Their effects on bacterial cell membrane integrity were investigated by transmission electron microscopy and a fluorescence-based permeability assay. Biofilm formation was quantified by crystal violet staining. Adhesion of FITC-labeled S. moorei to oral epithelial cells was monitored by fluorometry. The modulation of beta-galactosidase gene expression in S. moorei was evaluated by quantitative RT-PCR.Results: The green tea extract as well as EGCG inhibited the growth of S. moorei, with MIC values of 500 and 250 mu g/ml, respectively. Transmission electron microscopy analysis and a permeabilization assay brought evidence that the bacterial cell membrane was the target of green tea polyphenols. Regarding the effects of green tea polyphenols on the S. moorei colonization properties, it was found that biofilm formation on EGCG-treated surfaces was significantly affected, and that green tea extract and EGCG can cause the eradication of pre-formed S. moorei biofilms. Moreover, both the green tea extract and EGCG were found to reduce the adherence of S. moorei to oral epithelial cells. The beta-galactosidase activity of S. moorei, which plays a key role in VSC production, was dose-dependently inhibited by green tea polyphenols. In addition, EGCG at 1/2 MIC significantly decreased the beta-galactosidase gene expression.Conclusion: Our study brought evidence to support that green tea polyphenols possess a number of properties that may contribute to reduce S. moorei-related halitosis. Therefore, these natural compounds may be of interest to be used to supplement oral healthcare products.