95 resultados para Local electronic structures
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dental avulsion is the most severe type of traumatic tooth injuries because it causes damageto several structures and results in the complete displacement of the tooth from its socketin the alveolar bone. The ideal situation is to replant an exarticulated tooth immediatelyafter avulsion because the extraoral time is a determinant factor for treatment successand for a good prognosis. However, it is not always possible. The success of replantationdepends on a number of factors that may contribute to accelerate or minimize theoccurrence of root resorption or ankylosis, among which is the type and characteristicsof the medium used for temporary storage during the time elapsed between avulsionand replantation. Maintaining the tooth in an adequate wet medium that can preserve,as longer as possible, the vitality of the periodontal ligament cells that remain on rootsurface is the key to success of replantation. Recent research has led to the developmentof storage media that produce conditions that closely resemble the original socketenvironment, with adequate osmolality (cell pressure), pH, nutritional metabolites andglucose, and thus create the best possible conditions for storage. Although these storagemedia can now be purchased in the form of retail products, the most common scenariois that such a product will not be readily available at the moment of the accident Thispaper reviews the literature on the different storage media that have been investigatedfor avulsed teeth based on full-length papers retrieved from PubMed/Medline, Lilacs, BBOand SciELO electronic databases using the key words storage medium , transportationmedium , avulsion , tooth avulsion , replantation , tooth replantation , milk and propolis .After application of inclusion and exclusion criteria, 39 papers were selected and criticallyreviewed with respect to the characteristics, efficacy and ease of access of the storagemedium. The review of the lite
Resumo:
The electronic and structural properties and elastic constants of the wurtzite phase of GaN, was investigated by computer simulation at Density Functional Theory level, with B3LYP and B3PW hybrid functional. The electronic properties were investigated through the analysis of the band structures and density of states, and the mechanical properties were studied through the calculus of the elastic constants: C11, C33, C44, C12, and C13. The results show that the maximum of the valence band and the minimum of the conduction band are both located at the Γ point, indicating that GaN is a direct band gap semiconductor. The following constants were obtained for B3LYP and B3PW (in brackets): C11 = 366.9 [372.4], C33 = 390.9 [393.4], C44 = 99.1 [96.9], C12 = 143.6 [155.2], and C13 = 107.6 [121.4].