156 resultados para Liquid phase
Resumo:
A simultaneous method for the trace determination of acidic, neutral herbicides and their transformation products in estuarine waters has been developed through an on-line solid-phase extraction method followed by liquid chromatography with diode array and mass spectrometric detection. An atmospheric pressure chemical ionization (APCI) interface was used in the negative ionization mode after optimization of the main APCI parameters. Limits of detection ranged from 0.1 to 0.02 ng/ml for 50 mi of acidified estuarine waters preconcentrated into polymeric precolumns and using time-scheduled selected ion monitoring mode. Two degradation products of the acidic herbicides (4-chloro-2-methylphenol and 2,4-dichlorophenol) did not show good signal response using APCI-MS at the concentration studied due to the higher fragmentor voltage needed for their determination For molinate and the major degradation product of propanil, 3,4-dichloroaniline, positive ion mode was needed for APCI-MS detection. The proposed method was applied to the determination of herbicides in drainage waters from rice fields of the Delta del Ebro (Spain). During the S-month monitoring of the herbicides, 8-hydroxybentazone and 4-chloro-2-methylphenoxyacetic acid were successively found in those samples. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Cell culture of Maytenus ilicifolia were established in order to produce and to quantify the antitumoral and antioxidant quinonemethide triterpenes. In vitro calli were induced from leaf explants of native plants and cultured in semi-solid medium under controlled conditions of humidity, temperature and photoperiod. The quinonemethide triterpenes showed maximum accumulation in the logarithmic phase growth of the cell culture. A rapid, sensitive and reliable reverse-phase HPLC method was used for quantitative determination of the antitumoral and antioxidant quinonemethide triterpenes, 22β-hydroxymaytenin and maytenin in callus of Maytenus ilicifolia. Well resolved peaks with good detection response and linearity in the range 1.0 - 100 μg/mL were obtained. This quantitative work was performed by an external standard method.
Resumo:
A sensitive, precise, and specific high-performance liquid chromatographic (HPLC) method was developed for the assay of gatifloxacin (GATX) in raw material and tablets. The method validation parameters yielded good results and included the range, linearity, precision, accuracy, specificity, and recovery. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The HPLC separation was carried out by reversed-phase chromatography on a C18 absorbosphere column (250 x 4.6 mm id, 5 pm particle size) with a mobile phase composed of acetic acid 50/o--acetonitrile-methanol (70 + 15 + 15, v/v/v) pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 287 nm. The calibration graph for GATX was linear from 4.0 to 14.0 mu g/mL. The interday and intraday precisions (relative standard deviation) were less than 1.05%.
Resumo:
A sensitive, precise, and specific high-performance liquid chromatography (HPLC) method was developed for the assay of lomefloxacin (LFLX) in raw material and tablet preparations. The method validation parameters yielded good results and included the range, linearity, precision, accuracy, specificity, and recovery. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. The HPLC separation was performed on a reversed-phase Phenomenex C18 column (150 x 4.6 mm id, 5 pm particle size) with a mobile phase composed of 1% acetic acid-acetonitrile-methanol (70 + 15 + 15, v/v/v), pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 280 nm. The calibration graph for LFLX was linear from 2.0 to 7.0 mg/mL. The interday and intraday precisions (relative standard deviation) were less than 1.0%. The method was applied for the quality control of commercial LFLX tablets to quantitate the drug.
Resumo:
Simple and rapid procedures were developed for the quantification of amfepramone hydrochloride and diazepam and mazindol and diazepam in tablets using high performance liquid chromatography (HPLC) with UV detection. These techniques provided conditions for the separation of each active ingredient from the complex matrices of the dosage forms by dilution or extraction in methanol. Isocratic reversed phase chromatography was performed using acetonitrile, methanol, and aqueous 0,1% ammonium carbonate (70:10:20, v/v/v) as a mobile phase, Radial-Pak C-18 column (100 x 8 mm id, 4 mu m), a column temperature of 25+/-1 degrees C and detection at 255 nm. The calibration curves were linear over a wide concentration range (100-1000 mu g.mL(-1) to amfepramone hydrochloride and mazindol and 10-100 mu g.mL(-1) to diazepam) with good correlation factors of 0.9978, 0.9956 and 0.9997 for amfepramone hydrochloride, mazindol, and diazepam, respectively.Mean recoveries obtained from the two kinds of samples ranged from 83.2 to 102.5%, with coefficients of variation ranging from 1.0 to 6.1.These results demonstrated the efficiency of the proposed methods, as well as advantages such as simplicity and short duration of analysis.
Resumo:
An enantioselective micromethod for the simultaneous analysis of verapamil (VER) and norverapamil (NOR) in plasma was developed, validated and applied to the study of the kinetic disposition of VER and NOR after the administration of a single oral dose of racemic-VER to rats. VER, NOR and the internal standard (paroxetine) were extracted from only 100-mu L plasma samples using n-hexane and the enantiomers were resolved on a Chiralpak AD column using n-hexane:isopropanol: ethanol: diethyl ami ne (88:6:6:0.1) as the mobile phase. The analyses were performed in the selected reaction monitoring mode. Transitions 456 > 166 for VER enantiomers, 441 > 166 for NOR enantiomers and 330 > 193 for the internal standard were monitored and the method had a total chromatographic run time of 12 min. The method allows the determination of VER and NOR enantiomers at plasma levels as low as 1.0 ng/mL. Racemic VER hydrochloride (10 mg/kg) was given to male Wistar rats by gavage and blood samples were collected from 0 to 6.0 h(n = 6 at each time point). The concentration of (-)-(S)-VER was three folds higher than (+)-(R)-VER, with an AUC ratio (-)/(+) of 2.66. Oral clearance values were 12.17 and 28.77 L/h/kg for (-)-(S)-VER and (+)-(R)-VER, respectively. The pharmacokinetic parameters of NOR were not shown to be enantioselective. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This article presented physicochemical characterization and rheological behavior evaluation of the liquid crystalline mesophases developed with different silicones. There were prepared 5 ternary systems, which were carried out the determination of the relative density, the electric conductivity and polarized light microscopy analysis, being selected two systems to promote the Preliminary Stability Tests. The results showed that System 1 obtained the major liquid crystal formation and a higher stability. The temperature influences in the systems stability and phases structure. In hot oven, observed oneself the mixture of lamellar and hexagonal phase, for both systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A rapid, accurate, and sensitive high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of ceftazidime in pharmaceuticals. The method validation parameters yielded good results and included range, linearity, precision, accuracy, specificity, and recovery. The excipients in the commercial powder for injection did not interfere with the assay. Reversed-phase chromatography was used for the HPLC separation on a Waters C18 (WAT 054275; Milford, MA) column with methanol-water (70 + 30, v/v) as the mobile phase pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 245 nm. The calibration graph for ceftazidime was linear from 50.0 to 300.0 mu g/mL. The values for interday and intraday precision (relative standard deviation) were < 1 %. The results obtained by the HPLC method were calculated statistically by analysis of variance. We concluded that the HPLC method is satisfactory for the determination of ceftazidime in the raw material and pharmaceuticals.
Resumo:
Measurements of the third harmonic of the AC-susceptibility were employed to determine the boundaries of the linear regime of the magnetic response of Nb powder. Non-linear contributions to the magnetic response reveal the occurrence of a structured phase, disappearing as the vortex lattice melts to the liquid state. A systematic study of the third harmonic was conducted to determine how its onset temperature depends on experimental parameters, such as the frequency and amplitude of the excitation field. The melting line (ML) has been extracted from the onset temperature measured at low-frequencies and low-excitation fields in the presence of DC magnetic fields. The study indicates that the ML can be described by a 3D vortex-glass model, except at lower fields, where the system experiences a depinning crossover, and the best description of the experimental data is provided by a 3D Bose-glass model. (c) 2008 Elsevier B. V. All rights reserved.
Resumo:
The isolation of polyphenolic compounds from an infusion of the Brazilian plant Davilla elliptica (Dilleniaceae), used as tea by virtue of its digestive properties, is described. An improved preparative HPLC method was used in order to isolate pure polyphenols from the complex mixture. Liquid-liquid extraction and solid-phase extraction were employed to minimise the interference of polymeric compounds and to provide an enriched fraction of the compounds of interest. The identification of the isolated compounds was performed using analytical HPLC as well as direct injection electrospray ionisation ion trap tandem mass spectrometry (ESI-IT-MS/MS). The high flavonoid content suggests that D. elliptica may be a promising source of compounds to produce natural phytomedicines. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
The gel to liquid crystalline phase transition of the double-chained cationic dioctadecyldimethylammonium chloride and bromide (DODAX, X = Cl- or Br-) in aqueous vesicle dispersions prepared by non-sonication, sonication and extrusion has been investigated using high-sensitivity differential scanning calorimetry (DSC). The transition temperature (T-m) is a function of the preparation method, amphiphile concentration, vesicle curvature and nature of the counterion. DSC thermograms for DODAB and DODAC non-sonicated vesicle dispersions exhibit a single endothermic peak at T-m roughly independent of concentration up to 10 mM. Extrusion broadens the transition peak and shifts T-m downwards. Sonication, however, broadens slightly the transition peak and tends to shift T-m upwards suggesting that extrusion and sonication form vesicles with different characteristics. DODAC always exhibits higher T-m than DODAB irrespective of the preparation method. T-m changes as follows: T-m (sonicated) greater than or equal to T-m (non-sonicated) > T-m (extruded). Hysteresis of about 7 degrees C was observed for DODAB vesicle dispersions. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
A partial pseudo-ternary phase diagram has been studied for the cethyltrimethylammonium bromide/isooctane:hexanol:butanol/potassium phosphate buffer system, where the two-phase diagram consisting of the reverse micelle phase (L-2) in equilibrium with the solvent is indicated. Based on these diagrams two-phase systems of reverse micelles were prepared with different compositions of the compounds and used for extraction and recovery of two enzymes, and the percentage of enzyme recovery yield monitored. The enzymes glucose-6-phosphate dehydrogenase (G6PD) and xylose redutase (XR) obtained from Candida guilliermondii yeast were used in the extraction procedures. The recovery yield data indicate that micelles having different composition give selective extraction of enzymes. The method can thus be used to optimize enzyme extraction processes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The partition of hemoglobin, lysozyme and glucose-6-phospate dehydrogenase (G6PDH) in a novel inexpensive aqueous two-phase system (ATPS) composed by poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) has been studied. The effect of NaCl and Na2SO4, pH and PEG molecular size on the partitioning has been studied. At high pH (above 9), hemoglobin partitions strongly to the PEG-phase. Although some precipitation of hemoglobin occurs, high recovery values are obtained particularly for lysozyme and G6PDH. The partitioning forces are dominated by the hydrophobic and electrochemical (salt) effects, since the positively charged lysozyme and negatively charged G6PDH partitions to the non-charged PEG and the strongly negatively charged polyacrylate enriched phase, respectively. (c) 2007 Elsevier B.V. All rights reserved.