329 resultados para Liga aquea
Resumo:
As they have excellent mechanical properties, corrosion resistance and biocompatibility, much research has been conducted with respect to biomedical applications of titanium alloys. This work aims to study the experimental system binary alloy Ti-15Mo, in the raw state of fusion and heat treatment after homogenization, solubilization and calcination (simulating conditions employed for nanotube growth) targeting biomedical applications. Samples were obtained by casting the components in an electric arc furnace with inert atmosphere of argon. After obtaining the alloy, it was heat treated at three different heat treatments, namely homogenizing, calcining and simulation solubilization. The phases present were analyzed by X-ray diffraction, optical microscopy and microhardness testing
Resumo:
The aim of this study is to characterize the macrostructure and microstructure of Al - 1%Si alloy obtained in sand and metallic molds. Aluminium has good mechanical properties, but adding silicon, even in small quantities, can change the microstructure and improves mechanical behavior. Workpieces were castings in metallic and sand molds and one can see a difference in their cooling curve, macroscopic and microscopic structures. The sand mold casting has lower cooling rate and so its grains are larger. Due to the lower concentration of grain boundary, the hardness is lower compared to that found in metallic molds, which has smaller grains and a higher hardness. Therefore, it can be concluded that the cooling rate and alloying elements affect the final microstructure of the workpiece
Resumo:
It is very important to study the macrostructure of a material in the crude state of solidification due to influence the mechanical properties, as well as the study of their cooling curve. In the present work was to study the alloy AA 356, its macrostructure and its cooling curve. The material was cast in two different molds, a sand and other metallic. In this paper we study the differences in its macrostructure and its cooling curves. In macrostructure can observe the absence of the three zones of solidification and the presence of large pores because of moisture in the sand. In the sample taken from the metal mold can observe the three zones of solidification: a coquilhada, columnar and equiaxed
Resumo:
Titanium and its alloys has been widely used as materials for metallic biomaterials implants are usually employed to restore the hard tissue function, being used for artificial joints and bones, synthetic plates, crowns, dental implants and screws . Objective of this work was the surface modification of Ti-alloy 25Ta from biomimetic surface treatment of employment and deposition of polymer by electrospinning. The league was obtained from the fusion of the pure elements in the arc furnace with controlled atmosphere. The ingots were subjected to heat treatment, cold forged and sectioned discs with 13 mm diameter and 3 mm thick. Two surface treatments was evaluated, biomimetic and electrospinning with PCL fiber. The biomimetic treatment was performed involving alkaline treatment for three molarities 1.5M, 3M and 5M with immersion in SBF. The electrospinning was performed using PCL polymer alloy surface after the alkali treatment Ti25Ta 1M. For this group the polymer coated surfaces were immersed in calcium phosphate containing solution for immobilization of apatite. The results were compared with previous studies using surface treatment group to verify hydroxyapatite formation on the sample surface and it is concluded that the best condition is biomimetic treatment with 5M alkali treatment and heat treatment at 80 ° C for 72 hours
Resumo:
Several alloys present the shape memory effect and among them, the equiatomic NiTi alloy, nitinol, is the most important one. It is usually used in several engineering applications and also in biomedical devices, in the fabrication of orthodontic wire, stents and Judet staples. Although a considerable amount of these biomedical devices is utilized in Brazil and a fraction of it is already made here, all nitinol used is bought abroad. Thus, it is important to develop the necessary know-how to fabricate NiTi wire and sheet. It would mean less importation with job creation and wealth generation for the country. In this work nitinol was obtained powder metallurgy from elemental powders of Ti and Ni using uniaxial compression and uniaxial compression followed by isostatic compression. The final densities achieved were determined by the Archimedes method. The precipitation of intermetallic secondary phases was studied and the samples were characterized by metallographic analysis, optical microscopy and X-ray diffraction. Results indicated that 50 hours sintering route showed a low amount of intermetallics, and no trace of unreacted powder. XRD and metallography at room temperature indicated B19’ as the predominant phase, which corresponds to martensite. Although density results showed little dispersion, the most dense sample was compacted under uniaxial compression and presented 4.8 g/cm3, corresponding to 20.84% porosity. Density variation was considered normal to the measurement process and independent of the compaction mode
Resumo:
The nickel-titanium alloys are very attractive and so it is widely used in industry, engineering applications in general and also in biomedical and dental applications. Besides showing the shape of memory effect, biocompatibility and superelastic, the alloy commercially known as Nitinol, has excellent mechanical properties. Most devices used in Brazil have been produced nationally, but using imported material is also necessary, which shows the need of produce the alloy nationally. In this study we have investigated the influence of sintering temperatures and times to obtain nickel-titanium alloys by powder metallurgy alloys and the characterization of the precipitated intermetallic phases by using the post-mix of elemental nickel and titanium in proportion of 49.5% Ti - 50.5% Ni. The samples were sintered at 930ºC for periods of 30, 40 and 50 hours and were characterized by optical microscopy using metallography and x-ray diffraction. The results of the study show that the 50 hours sintering time was the most suitable time for obtaining the alloy, observing a low volume of precipitated intermetallic phases and absence of Ni and Ti residuals
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
By means of tensile strength, NiCr total crowns were removed from machine-made conical abutments composed by an Ti-6Al-4V alloy. In a total of 20 abutments, 10 were used with it surface presenting high smoothness and 10 abutments had its surfaces modifi ed by laser both cemented with zinc phosphate. The mechanical test was performed at a MTS 810 universal machine adjusted to a speed of 0.5 mm/m. The statistical analysis was done by Levene’s test, which showed homogeneity of variances among groups (F =2.21; p < 0.1). “Student t test” showed that signifi cant differences were found between groups. The modifi cation of the abutment surface through laser caused an increase in pull-out resistance of crowns cemented with zinc phosphate from 430.66 N to 1.514,87 N.
Resumo:
In this work of tensile strength was evaluated the efficacy of 4 cements (S. S. White zinc phoshate, Ketac Cem Easymix glass ionomer, RelyX Luting 2 composite resin/glass ionomer and Panavia 21 TC special acrylic resin) used to fix NiCr crowns to usinated titanium alloy abutments. Were used 40 abutments distributed in groups of 10 elements, to each material. The mechanical essays were developed at a MTS 810 universal machine, adjusted to a 0.5 mm/m velocity. The ANOVA applied to data pointed out the existence of significant differences between groups; the subsequent Tukey´s test (p<0.05) also detected significant differences, except at comparisons of phosphate versus RelyX and phosphate versus Ketac Cem. The better performance was presented by Panavia 21 (1,127.996 N); RelyX (478.197 N) showed itself similar only to phosphate (430.662 N), wich had a performance similar to that of Ketac Cem (227.705 N).
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
This work will address the study of fatigue conditions with constant load in an alloy of aluminum analysis 7475 - T761, so we can better understand the conditions of the aircrafts which contain this alloy in their structures. A literature review, which was discussed the concepts of fracture mechanics, fatigue, aeronautical components, chemical analysis of aluminum alloys, fatigue problems that appears in the aircrafts, metallographic analysis, and testing of optical microscopy tensile, fatigue and microhardness, surface analysis (MEV) study of the chemical composition of the alloy in question, the main causes of crashes, was performed, completing the work, analysis of data from tensile test, hardness and fatigue together with the interpretation of images of optical microscopy and scanning electron was taken. The data indicated the high mechanical strength of the alloy, along with its microstructure indicating elongated grains and high surface contour, which shows such resistance by hindering the movement of dislocations. The grooves are clearly shown in the MEV images as well as the classic with increased fatigue loading and subsequent reduction of the number of cycles to rupture behavior shown in the graphs. Therefore we observed the optimal behavior is supported by the league when subjected to fatigue loadings
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)