194 resultados para Infinite.
Resumo:
We present an operator formulation of the q-deformed dual string model amplitude using an infinite set of q-harmonic oscillators. The formalism attains the crossing symmetry and factorization and allows to express the general n-point function as a factorized product of vertices and propagators.
Resumo:
It is shown that the affine Toda models (AT) constitute a gauge fixed version of the conformal affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota τ-functions are introduced and soliton solutions for the AT and CAT models associated to SL̂ (r+1) and SP̂ (r) are constructed.
Resumo:
We consider a system formed by an infinite viscous liquid layer with a constant horizontal temperature gradient and a basic nonlinear bulk velocity profile. In the limit of long wavelength and large nondimensional surface tension we show that hydrothermal surface-wave instabilities may give rise to disturbances governed by the Kuramoto-Sivashinsky equation. A possible connection to hot-wire experiments is also discussed. © 1994.
Resumo:
The relation between the spin and the mass of an infinite number of particles in a q-deformed dual string theory is studied. For the deformation parameter q a root of unity, in addition to the relation of such values of q with the rational conformal field theory, the Fock space of each oscillator mode in the Fubini-Veneziano operator formulation becomes truncated. Thus, based on general physical grounds, the resulting spin-(mass)2 relation is expected to be below the usual linear trajectory. For such specific values of q, we find that the linear Regge trajectory turns into a square-root trajectory as the mass increases.
Resumo:
The models of translationally invariant infinite nuclear matter in the relativistic mean field models are very interesting and simple, since the nucleon can connect only to a constant vector and scalar meson field. Can one connect these to the complicated phase transitions of QCD? For an affirmative answer to this question, one must consider models where the coupling contstants to the scalar and vector fields depend on density in a nonlinear way, since as such the models are not explicitly chirally invariant. Once this is ensured, indeed one can derive a quark condensate indirectly from the energy density of nuclear matter which goes to zero at large density and temperature. The change to zero condensate indicates a smooth phase transition. © Springer-Verlag 1996.
Resumo:
The magnetostatic field of an infinite rectilinear current placed in the stationary gravitational field of a rotating cosmic string is found. An interesting aspect of this problem is that although the metric is mathematically very simple, its physical meaning is not trivial. It depends only on topological parameters. So, the cosmic string vacuum space-time is locally equivalent to the Minkowski space-time, but not globally. The calculations are so simple that they can easily be shown in the classroom. © 1997 American Association of Physics Teachers.
Resumo:
Using an infinite number of fields, we construct actions for D = 4 self-dual Yang-Mills with manifest Lorentz invariance and for D = 10 super-Yang-Mills with manifest super-Poincaré invariance. These actions are generalizations of the covariant action for the D = 2 chiral boson which was first studied by McClain, Wu, Yu and Wotzasek.
Resumo:
We study the low-energy universality observed in three-body models through a scale-independent approach. From the already estimated infinite number of three-body excited energy states, which happen in the limit when the energy of the subsystem goes to zero, we are able to identify the lower energies of the helium trimers as possible examples of Thomas-Efimov states. By considering this example, we illustrate the usefulness of a scaling function, which we have defined. The approach is applied to bosonic systems of three identical particles, and also to the case where two kinds of particles are present.
Resumo:
We construct explicit multivortex solutions for the complex sine-Gordon equation (the Lund-Regge model) in two Euclidean dimensions. Unlike the previously found (coaxial) multivortices, the new solutions comprise n single vortices placed at arbitrary positions (but confined within a finite part of the plane.) All multivortices, including the single vortex, have an infinite number of parameters. We also show that, in contrast to the coaxial complex sine-Gordon multivortices, the axially-symmetric solutions of the Ginzburg-Landau model (the stationary Gross-Pitaevskii equation) do not belong to a broader family of noncoaxial multivortex configurations.
Resumo:
We use ideas on integrability in higher dimensions to define Lorentz invariant field theories with an infinite number of local conserved currents. The models considered have a two-dimensional target space. Requiring the existence of lagrangean and the stability of static solutions singles out a class of models which have an additional conformal symmetry. That is used to explain the existence of an ansatz leading to solutions with non-trivial Hopf charges. © SISSA/ISAS 2002.
Resumo:
We present the exact construction of Riemannian (or stringy) instantons, which are classical solutions of 2D Yang-Mills theories that interpolate between initial and final string configurations. They satisfy the Hitchin equations with special boundary conditions. For the case of U(2) gauge group those equations can be written as the sinh-Gordon equation with a delta-function source. Using the techniques of integrable theories based on the zero curvature conditions, we show that the solution is a condensate of an infinite number of one-solitons with the same topological charge and with all possible rapidities.
Resumo:
The scaling dependence of the recombination parameter as a function of the ratio between the energies of the atomic dimer and the most excited trimer states was derived. The scaling function tends to a unversal function in the limit of zero-range interaction or infinite scattering length. This paper reports on how one can obtain the trimer binding energy of a trapped atomic system, from the three-body recombination rate and the corresponding two-body scattering length.
Resumo:
This paper is concerned with the stability of discrete-time linear systems subject to random jumps in the parameters, described by an underlying finite-state Markov chain. In the model studied, a stopping time τ Δ is associated with the occurrence of a crucial failure after which the system is brought to a halt for maintenance. The usual stochastic stability concepts and associated results are not indicated, since they are tailored to pure infinite horizon problems. Using the concept named stochastic τ-stability, equivalent conditions to ensure the stochastic stability of the system until the occurrence of τ Δ is obtained. In addition, an intermediary and mixed case for which τ represents the minimum between the occurrence of a fix number N of failures and the occurrence of a crucial failure τ Δ is also considered. Necessary and sufficient conditions to ensure the stochastic τ-stability are provided in this setting that are auxiliary to the main result.
Resumo:
This work deals with the effects of the series compensation on the electric power system for small-signal stability studies. Therefore, the system is modeled admitting the existence of the compensation and then, the equations are linearized and a linear model is obtained for a single machine-infinite bus power system with a compensator installed. The resulting model with nine defined constants is very similar to the Heffron & Phillips linear model widely used on the existent literature. Finally, simulations are executed for an example system, to analyze the behavior of these constants when loading the system. © 2004 IEEE.
Resumo:
We introduce a Skyrme type, four-dimensional Euclidean field theory made of a triplet of scalar fields n→, taking values on the sphere S2, and an additional real scalar field φ, which is dynamical only on a three-dimensional surface embedded in R4. Using a special ansatz we reduce the 4d non-linear equations of motion into linear ordinary differential equations, which lead to the construction of an infinite number of exact soliton solutions with vanishing Euclidean action. The theory possesses a mass scale which fixes the size of the solitons in way which differs from Derrick's scaling arguments. The model may be relevant to the study of the low energy limit of pure SU(2) Yang-Mills theory. © 2004 Elsevier B.V. All rights reserved.