105 resultados para Hypergraphs and metric spaces.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.
Resumo:
Following the discussion-in state-space language-presented in a preceding paper, we work on the passage from the phase-space description of a degree of freedom described by a finite number of states (without classical counterpart) to one described by an infinite (and continuously labelled) number of states. With this it is possible to relate an original Schwinger idea to the Pegg-Barnett approach to the phase problem. In phase-space language, this discussion shows that one can obtain the Weyl-Wigner formalism, for both Cartesian and angular coordinates, as limiting elements of the discrete phase-space formalism.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
The measurability of the non-minimal coupling is discussed by considering the correction to the Newtonian static potential in the semiclassical approach. The coefficient of the gravitational Darwin term (GDT) gets redefined by the non-minimal torsion scalar couplings. Based on a similar analysis of the GDT in the effective field theory approach to non-minimal scalar, we conclude that for reasonable values of the couplings the correction is very small.
Resumo:
Let alpha be a C(infinity) curve in a homogeneous space G/H. For each point x on the curve, we consider the subspace S(k)(alpha) of the Lie algebra G of G consisting of the vectors generating a one parameter subgroup whose orbit through x has contact of order k with alpha. In this paper, we give various important properties of the sequence of subspaces G superset of S(1)(alpha) superset of S(2)(alpha) superset of S(3)(alpha) superset of ... In particular, we give a stabilization property for certain well-behaved curves. We also describe its relationship to the isotropy subgroup with respect to the contact element of order k associated with alpha.
Resumo:
Operator bases are discussed in connection with the construction of phase space representatives of operators in finite-dimensional spaces, and their properties are presented. It is also shown how these operator bases allow for the construction of a finite harmonic oscillator-like coherent state. Creation and annihilation operators for the Fock finite-dimensional space are discussed and their expressions in terms of the operator bases are explicitly written. The relevant finite-dimensional probability distributions are obtained and their limiting behavior for an infinite-dimensional space are calculated which agree with the well known results. (C) 1996 Academic Press, Inc.
Resumo:
The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Using the flexibility and constructive definition of the Schwinger bases, we developed different mapping procedures to enhance different aspects of the dynamics and of the symmetries of an extended version of the two-level Lipkin model. The classical limits of the dynamics are discussed in connection with the different mappings. Discrete Wigner functions are also calculated. © 1995.
Resumo:
We establish the conditions under which it is possible to construct signal sets satisfying the properties of being geometrically uniform and matched to additive quotient groups. Such signal sets consist of subsets of signal spaces identified to integers rings ℤ[i] and ℤ[ω] in ℤ2. © 2008 KSCAM and Springer-Verlag.
Resumo:
In the book Conceptual Spaces: the Geometry of Thought [2000] Peter Gärdenfors proposes a new framework for cognitive science. Complementary to symbolic and subsymbolic [connectionist] descriptions, conceptual spaces are semantic structures constructed from empirical data representing the universe of mental states. We argue that Gärdenfors' modeling can be used in consciousness research to describe the phenomenal conscious world, its elements and their intrinsic relations. The conceptual space approach affords the construction of a universal state space of human consciousness, where all possible kinds of human conscious states could be mapped. Starting from this approach, we discuss the inclusion of feelings and emotions in conceptual spaces, and their relation to perceptual and cognitive states. Current debate on integration of affect/emotion and perception/cognition allows three possible descriptive alternatives: emotion resulting from basic cognition; cognition resulting from basic emotion, and both as relatively independent functions integrated by brain mechanisms. Finding a solution for this issue is an important step in any attempt of successful modeling of natural or artificial consciousness. After making a brief review of proposals in this area, we summarize the essentials of a new model of consciousness based on neuro-astroglial interactions. © 2011 World Scientific Publishing Company.
Resumo:
Increased urbanization typically leads to an increase in abundance of a few species and a reduction in bird species richness. Understanding the structure of biotic communities in urban areas will allow us to propose management techniques and to decrease conflicts between wild species and human beings. The objective of this study was to describe the structure of the bird community in an urban ecosystem. The study was carried out in the city of Taubaté in southeastern Brazil. Point-counts were established in areas with different levels of tree density ranging from urban green spaces to predominantly built-up areas. We looked for a correlation between the richness/abundance of birds and the size of the area surveyed, the number of houses, the number of tree species and the number of individual trees. The results of multiple regression showed that bird richness had a direct relationship with vegetation complexity. The abundance and diversity of tree species were better predictors of bird species than the number of houses and size of the area surveyed. We discuss implications of this study for conservation and management of bird diversity in urban areas, such as the need to increase green areas containing a large diversity of native plant species. © 2011 Springer Science+Business Media, LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An extended Weyl-Wigner transformation which maps operators onto periodic discrete quantum phase space representatives is discussed in which a mod N invariance is explicitly implemented. The relevance of this invariance for the mapped expression of products of operators is discussed. © 1992.