103 resultados para High stability


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prediction of genetic gains within breeding programs is not always compatible with those observed in practice. One reason for this inconsistency is the lack of knowledge of genotype-environment interaction (GxE). The aim of this study was to estimate genetic variation, evaluate the GxE, investigate the genetic correlation between pairs of environments and for the set, and to study the productivity, stability and adaptability at 2 years of age for diameter at breast height (DBH) in five progenies trials of Eucalyptus urophylla, used in a randomized complete block design, with the number of progenies ranging from 138 to 167, four to eight blocks and five to six plants per plot. Estimates of variance components and genetic parameters were obtained using the REML/BLUP method. For analysis of productivity, stability and adaptability, the HMRPGV method was used. The highest DBH growth was observed in Anhembi (10.52 cm) and Uberaba (10.20 cm). Estimates considered high were obtained for the coefficient of individual additive genetic variation (>13.3%) and average heritability among progenies (>0.40), indicating the possibility of obtaining genetic gains by selection among progenies. The coefficient of determination of the GxE was 1.7%, a fact that led to a high value of genotypic correlation between the performance of the progenies and environments (78.1%), indicating that the interaction is simple. The first six progenies showed a coincidence of 100% in the order of stability (HMGV), adaptability (RPGV) and productivity (HMRPGV), being 13% higher than the overall mean of five experiments (9.21 cm). When ordering the progenies, the selection of the 20 best in growth led to an increase in gain ranging of from 10.4 to 70%. Anhembi is the ideal place to have a breeding population which will be good in the other places as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). High-power-density LED (ΔE=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus--ΔE=2.05; XL 3000--ΔE=2.28). Coffee (ΔE=8.40; ΔL=-5.21) showed the highest influence on color stability of the studied composite resin. There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). High-power-density LED (ΔE=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus--ΔE=2.05; XL 3000--ΔE=2.28). Coffee (ΔE=8.40; ΔL=-5.21) showed the highest influence on color stability of the studied composite resin. There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical and physical degradation of drugs may result in altered therapeutic efficacy and even toxic effects. Therefore, the aim of this work was to study the stability of darunavir and to develop and validate a liquid chromatography (LC) method to determine darunavir in raw material and tablets in the presence of degradation products. The novel method showed to be linear from 6.0 to 21.0 μg/mL, with high precision (CV < 2%) and accuracy (recuperation of 99.64%). It is simple and reliable, free of placebo interferences. The robustness of the method was evaluated by a factorial design using seven different parameters. Forced degradation study was done under alkaline, acidic, and oxidative stress at ambient temperature and by heating. The LC method was able to quantify and separate darunavir and its degradation products. Darunavir showed to be unstable under alkaline, acid, and oxidative conditions. The novelty of this study is understanding the factors that affect darunavir ethanolate stability in tablets, which is the first step to unravel the path to know the degradation products. The novel stability-indicating method can be used to monitor the drug and the main degradation products in low concentrations in which there is linearity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Ti-Ta alloys have high potential for dental application due to a good balance between high strength and low modulus. Absence of primary anchoring may occur when dental implants are installed immediately after tooth extraction. Tranexamic acid (TEA) is used to reduce fibrin degradation and can prevent early blood clot breakdown. The aim of this study was to evaluate the biocompatibility of Ti-30Ta implants associated or not with tranexamic acid and installed with compromised primary stability. Methods and materials: Fabricated were 20 implants of titanium ASTM F67 (Grade 4) and 20 implants of Ti-30Ta alloy with dimensions of 2.1 mm × 2.8 mm Ø. They were divided (n = 10) into Group I (Ti machined), Group II (Ti machined/tranexamic acid), Group III (Ti-30Ta alloy) and Group IV (Ti-30Ta/tranexamic acid) and were implanted in tibia (defects with 2.5 mm × 3.2 mm Ø) of 40 male rats (250 g). The surgical sites were rinsed with 5% tranexamic acid solution in Groups II and IV. The animals were euthanized at 45 days postoperative. The pieces were processed in methyl methacrylate (Stevenel's blue/Alizarin red). The percentage of peri-implant tissue repair was analyzed via images obtained by an optical microscope coupled to a digital camera using Leica software and Adobe Photoshop QWin. Data were analyzed statistically with a significance level of 5%. Results: Histomorphometric results showed 97.16% of bone-implant contact for group IV, 89.78% of bone contact for group III, 70.89% for group II and 61.59% of bone contact for group I. The statistical analyses demonstrated significant differences (P < 0.05) among group I and other groups. Conclusion: The results suggest that (a) Ti-30Ta promoted an increase of bone healing and apposition around implant; (b) tranexamic acid favored the stabilization of blood clot and bone formation.