110 resultados para Glycerin purification
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An extracellular pectin lyase secreted by Fusarium decemcellulare MTCC 2079 under solid state fermentation condition has been purified to electrophoretic homogeniety by using ammonium sulfate fractionation, carboxymethyl cellulose and gel filtration (Sephadex G-100) column chromatographies. The purified enzyme showed single protein band corresponding to molecular mass 45 +/- 01 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme had maximum activity at pH 9.0 and showed maximum stability in the pH range of 9.0-12.0. The optimum temperature of the purified enzyme was 50 degrees C and it showed maximum stability upto 40 degrees C. The energy of activation for the thermal denaturation (Ea) was 59.06 kJ mol(-1) K-1. The K-m and k(cat) values using citrus pectin as the substrate were 0.125mgml(-1) and 72.9 s(-1) in 100mM sodium carbonate buffer pH 9.0 at 50 degrees C. The biophysical studies on pectin lyase showed that its secondary structure belongs to alpha+beta class of protein with comparatively less of beta-sheets. Purified pectin lyase showed efficient retting of Crotolaria juncea fibers.
Resumo:
Polygalacturonases are enzymes involved in the degradation of pectic substances, being extensively used in food industries, textile processing, degumming of plant rough fibres, and treatment of pectic wastewaters. Polygalacturonase (PG) production by thermophilic fungus Thermoascus aurantiacus on solid-state fermentation was carried out in culture media containing sugar cane bagasse and orange bagasse in proportions of 30% and 70% (w/w) at 45°C for 4 days. PG obtained was purified by gel filtration and ion-exchange chromatography. The highest activity was found between pH 4.5 and 5.5, and the enzyme preserved more than 80% of its activity at pH values between 5.0 and 6.5. At pH values between 3.0 and 4.5, PG retained about 73% of the original activity, whereas at pH 10.0 it remained around 44%. The optimum temperature was 60–65°C. The enzyme was completely stable when incubated for 1 hour at 50°C. At 55°C and 60°C, the activity decreased 55% and 90%, respectively. The apparent molecular weight was 29.3 kDa, Km of 1.58 mg/mL and Vmax of 1553.1μmol/min/mg. The presence of Zn+2, Mn+2, and Hg+2 inhibited 59%, 77%, and 100% of enzyme activity, respectively. The hydrolysis product suggests that polygalacturonase was shown to be an endo/exoenzyme.
Resumo:
Lipases have important applications in biotechnological processes, motivating us to produce, purify, immobilize and perform a biochemical characterization of the lipase from Rhizomucor pusillus. The fungus was cultivated by solid state fermentation producing lipolytic activity of about 0.5 U/mL(4U/g). A partial purification by gel filtration chromatography in Se-phacryl S-100 allowed obtaining a yield of about 85% and a purification factor of 5.7. Our results revealed that the purified enzyme is very stable with some significant differences in its properties when compared to crude extract. The crude enzyme extract has an optimum pH and temperature of 7.5 ° C and 40 ° C, respectively. After purification, a shift of the optimum pH from 7 to 8 was observed, as well as a rise in optimumtemperature to 60 ° C and an increase in stability. The enzyme was immobilized on CNBr-Agarose and Octyl-Agarose supports, having the highest immobilization yield of 94% in the second resin. The major advantage of immobilization in hydrophobic media such as Octyl is in its hyper activation, which in this case was over 200%, a very interesting finding. Another advantage of this type of immobilization is the possibility of using the derivatives in biotechnological applications, such as in oil enriched with omega-3 as the results obtained in this study display the hydrolysis of 40% EPA and 7% DHA from sardine oil, promising results compared to the literature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Naked maghemite nanoparticles, namely, surface active maghemite nanoparticles (SAMNs), characterized by a diameter of about 10 nm, possessing peculiar colloidal stability, surface chemistry, and superparamagnetism, present fundamental requisites for the development of effective magnetic purification processes for biomolecules in complex matrices. Polyphenolic molecules presenting functionalities with different proclivities toward iron chelation were studied as probes for testing SAMN suitability for magnetic purification. Thus, the binding efficiency and reversibility on SAMNs of phenolic compounds of interest in the pharmaceutical and food industries, namely, catechin, tyrosine, hydroxytyrosine, ferulic acid, coumaric acid, rosmarinic acid, naringenin, curcumin, and cyanidin-3-glucoside, were evaluated. Curcumin emerged as an elective compound, suitable for magnetic purification by SAMNs from complex matrices. A combination of curcumin, demethoxycurcumin, and bis-demethoxycurcumin was recovered by a single magnetic purification step from extracts of Curcuma longa rhizomes, with a purity >98% and a purification yield of 45%, curcumin being >80% of the total purified curcuminoids.
Resumo:
Polyphenol oxidase (PPO, EC 1.14.18.1) extracted from sweet potato root [Ipomoea batatas (L.) Lam.] was purified 189-fold by precipitation with ammonium sulfate and elution from columns of Sephadex G-25, DEAE-cellulose, and Sephadex G-100. Polyacrylamide gel electrophoresis of the purified preparation revealed that PPO was highly purified by the procedure adopted. The purified enzyme had an estimated molecular weight of 96 000 and Km values of 26, 8, 5, and 96 mM for 4-methylcatechol, chlorogenic acid, caffeic acid, and catechol, respectively. The optimum pH varies from about 4.0 to 6.5, depending on the substrate. PPO activity was inhibited by p-coumaric and cinnamic acids, sodium metabisulfite, dithioerythritol, ascorbic acid, L-lysine, D-phenylalanine, L-methionine, glycine, L-isoleucine, and L-glutamine. Heat inactivation between 60 and 80 °C was biphasic. Sucrose, (NH4)2SO4, NaCl, and KCl appeared to be protective agents of sweet potato PPO against thermal denaturation. © 1992 American Chemical Society.
Resumo:
A pectin lyase, named PLIII, was purified to homogeneity from the culture filtrate of Aspergillus giganteus grown in submerged culture containing orange peel waste as carbon source. PLIII was able to digest apple pectin and citrus pectins with different degrees of methyl esterification. Interestingly, the PLIII activity was stimulated in the presence of some divalent cations including Pb(2+) and was not significantly affected by Hg(2+). Like other pectin lyases, PLIII is stimulated by but is not dependent on Ca(2+). The main soluble product released during the degradation of pectic substances promoted by the PLIII is compatible with an unsaturated monogalacturonate. PLIII is a unique enzyme able to release unsaturated monogalacturonate as the only soluble product during the degradation of pectic substances; therefore, PLIII was classified as an exo-pectin lyase. To our knowledge, this is the first characterization of an exo-pectin lyase. The PLIII described in this work is potentially useful for ethanol production from pectin-rich biomass, besides other common applications for alkaline pectinases like preparation of textile fibers, coffee and tea fermentation, vegetable oil extraction, and the treatment of pulp in papermaking.