135 resultados para Gemstone Team ELECTRODE
Resumo:
The present work reports the use of a screen-printed carbon electrode (SPCE) modified by poly-L-histidine film to determine chromium (VI). Stable films can be formed by direct addition of PH solution 1 % (w/v) on the electrode surface, followed by heating at 80°C during 5 min. Calibration curves can be constructed for Cr(VI) from 1.0 × 10-5 mol L-1 to 7.0 × 10-5 mol L-1 Cr (VI) in acetate buffer pH 4 using a preconcentration step of 60s at open circuit potential. A relative standard deviation of 3.2% was for five determination of 4.0 × 10 -5 mol L-1 Cr (VI). The method was successful applied to determination of Cr(VI) in wastewater samples from a leather dyeing industry. copyright The Electrochemical Society.
Resumo:
Organo-clay complex of ligand-hexadecyltrimethylammonium with montmorillonite was made for the purpose of application as a preconcentration agent in a chemically modified carbon paste electrode for determination of mercury (II) in aqueous solution. It was found out that the adsorption of Hg(II) by organo-clay complex is independent of the pH of the solution. It was also found out that the adsorption of the remaining metals Cd(II), Ps(II), Cu(II), Zn(II), and Ni(II) was dependent on the changes in pH solutions and increased when it varies from 1 to 8. The resultant material was characterized by cyclic and differential pulse anodic voltammetry using a modified graphite paste electrode in different supporting electrolytes. The mercury response was evaluated with respect to pH, electrode composition, preconcentration time, mercury concentration, possible interferences and other variables.
Resumo:
A study on the electrochemical behavior of histamine species in aqueous medium is described. A glassy carbon electrode chemically modified with copper (II) hexacyanoferrate (CuHCFe) film and covered with Nafion® film was employed. The interaction between the analyte and the CuHCFe film can be demonstrated by a decrease in both the cathodic and anodic peak currents at 0.68V (vs. Ag/AgCl), attributed to the film and the appearance of new peak current at 0.47V. Cyclic voltammetric parameters obtained for histamine indicate the formation of stable complex between histamine adsorbed at the electrode surface. The dependence of peak currents on the concentration of the analyte is not linear in the employed work range, indicating the presence of a coupled chemical reaction in the electrodic process. © 2010 by ESG.
Resumo:
Studies carried out with glass electrode in anhydrous ethanol and ethanol-water solutions for measuring pH values have shown that this parameter depends on the solution composition, the contact time with the solution, the utilized temperature, and the type of electrolyte used. It was also observed that the glass electrode behavior in an acid medium differs from an alkaline medium. These studies provided correction factors for pH values from 2 to 12, allowing the realization of proper measurements of the hydrogen ionic activity in the ethanol-water and anhydrous ethanol solutions. However, these correction factors could not be applied to the fuel ethanol. Alternatively, a new method was developed for the correction of the pH values, which can be applied in hydrous and anhydrous fuel ethanol samples. Copyright © 2011 by ASTM International.
Resumo:
Copper Pentacyanonitrosylferrate (NCuNP) nanoparticles were prepared in formamide solvent. The material was characterized by Infrared (FTIR), X-Ray Diffraction (XRD) and Ultraviolet-Visible (UV-Vis) Spectroscopy. The Cyclic Voltammogram (CV) the modified graphite paste electrode with NCuNP exhibits two redox couples with (Eθ,)1 = 0.29 and (E θ,)2 = 0.86 V attribute at Cu(I)/Cu (II) and Fe(II)(CN)5NO/Fe(III)(CN) 5NO processes, respectively (KCl = 1.0 mol L-1; v = 20 mV s-1). The redox couple with (Eθ,)2 presents an electrocatalytic response for sulfite. The modified graphite paste electrode gives a linear response of 7.0 × 10-4 to 3.0 × 10-2 mol L-1 (r = 0.998), for sulfite determination with Detection Limit (DL) of 1.76 × 10-3 mol L-1 and an amperometric sensitivity of 3.38 mA/mol L-1 and relative standard desviations ± 3% (n=3). ©The Electrochemical Society.
Resumo:
Voltammetric analysis of amodiaquine using a hemin biosensor revealed a well-defined peak at 0.14 V (vs. Ag/AgCl), corresponding to the oxidation of amodiaquine at pH 7.0. The electrodic behavior indicated that the oxidation process was irreversible, and that it was controlled by diffusion. In addition to advantages such as high selectivity and sensitivity, the method developed could be used for the analysis of breast milk containing amodiaquine without any need for prior sample treatment, an important consideration in routine analysis laboratories. Measurements of the drug contained in breast milk were used to validate the technique. The detection limit for standard solutions was 3.30 mg L-1, and the quantification limit was 11.0 mg L-1. ©The Electrochemical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A mercury film electrode was used to determine direct and simultaneously Pb(II) (at -410 mV) and Cu(II) (at -100 mV) in biodiesel by anodic stripping voltammetry. A linear response was obtained for Pb(II) and Cu(II) in the 2.00 × 10-8-1.00 × 10-7 mol L-1 concentration range and detection limits were 2.91 × 10-9 mol L-1 and 4.69 × 10-9 mol L-1 for Pb(II) and Cu(II), respectively, with recovery around of 100.0%. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper describes the optimisation and the analytical performances of a label-free impedimetric immunosensor for the detection of tumour marker CA125 based on gold nanoparticles modified screen-printed graphite electrode. Experimental conditions of each step for the developed immunosensor were studied and optimised. The immunosensor response varied linearly (r2 = 0.996) with antigen concentration between 0 and 100 U/mL. The estimated detection limit was 6.7 U/mL. The electrochemical immunosensor allowed unambiguous identification of CA125, while no significant non-specific signal was detected in the case of all negative controls. The analytical usefulness of the impedimetric immunosensor was finally demonstrated analysing serum samples. © 2012 Elsevier B.V. All rights reserved.
Resumo:
A voltammetric method for the determination of ethyl acetate in ethanol fuel using a Fe3+/Nafion®-coated glassy carbon electrode (GCE) is proposed. The ethyl acetate present in the ethanol fuel was previously converted to acetohydroxamic acid via pretreatment with hydroxylamine chloride. The acetohydroxamic acid promptly reacted with the iron (III) present in the film, producing iron (III) acetohydroxamate, which presents a well-defined voltammetric peak current at -0.02 V. Optimization of the voltammetric parameters for the cyclic, linear sweep, square wave, and differential pulse modalities was carried out for this chemically-modified electrode. Square wave voltammetry afforded the best response for acetohydroxamic acid detection. The analytical curve for this species was linear from 9 to 100 μmol L 1 according to the following equation: ip (μA) = 0.27 + 2.55Cacetohydroxamic acid (μmol L 1), with linear correlation coefficient equal to 0.993. The technique presented limit of detection equal to 5.3 μmol L 1 and quantification limit of 17.6 μmol L 1. The proposed method was compared to the official method of ethyl acetate analysis (Gas Chromatography), and a satisfactory correlation was found between these techniques. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Pyrazinamide (Pyrazinecarboxamide-PZA) is a drug that is used to treatment tuberculosis. In the present work, the voltammetric behavior of PZA was studied using a screen-printed modified electrode (SPCE). The modified electrode was constructed using poly-histidine films, and it showed an electrocatalytic effect, thus promoting a decrease in PZA reduction potential and improving the voltammetric response. Cyclic voltammetry and electrochemical impedance spectroscopy techniques have been employed in order to elucidate of the electrodic reaction. The results allowed the proposal that in the PZA reduction, a further chemical reaction occurs that corresponds to a second-order process which is subsequent to the electrode reaction. In addition, a sensitive voltammetric method was developed, and it was successfully applied for PZA determination in human urine samples. The best response was found using SPCE modified with poly-histidine prepared by histidine monomer electropolymerization (SPCE/EPH). The electroanalytical performance of the SPCE/EPH was investigated by linear sweep (LSV), differential pulse (DPV), and square wave voltammetry (SWV). A linear relationship between peak current and PZA concentrations was obtained from 9.0 × 10-7 to 1.0 × 10-4 mol L-1 by using DPV. The limit of detection at 5.7 × 10 -7 mol L-1 was estimated, and a relative standard deviation of the 5.0 × 10-6 mol L-1 of PZA of 10 measurement was 3.7%. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A glassy carbon electrode chemically modified with nickel oxyhydroxide from a nickel hexacyanoferrate (NiHCF) film was used to determine glycerol in biodiesel by cyclic voltammetry. The modified electrode exhibited a linear response to glycerol concentration in the range from 0.05 to 0.35mmol L-1, and a detection limit of 0.030mmol L-1. The glycerol concentration found in the biodiesel sample was 0.156mmol L-1. The method developed in this study showed a recovery of (100.3±5.0)%. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Vegetables were analyzed for total N-nitrosamines (NAs) and the influence of disinfection processes was assessed. Differences in NAs found in cabbage, spinach, and broccoli were determined by square wave voltammetry using a boron-doped diamond electrode. Analysis of samples showed that all samples contained detectable levels of NAs but the results indicated that organic contained less than conventionally grown products. The sum of the total NAs was higher in the cabbage samples, ranging between 2.8-3.1 ppb and lower in broccoli samples at 0.2-1.1 ppb. The method described is simple, rapid, selective, and sensitive. The results suggested that the disinfection process affects the level of NAs, in this manner affecting the level of human exposure to NAs. © 2012 Springer Science+Business Media New York.
Resumo:
Photoelectrochemical properties of FTO/BiVO4 electrode were investigated in different electrolytic solutions, potassium chloride (KCl) and sodium sulphate (Na2SO4), and under visible light irradiation condition. In order to accomplish that, an FTO/BiVO4 electrode was built by combining the solution combustion synthesis technique with the dip-coating deposition process. The morphology and structure of the BiVO4 electrode were investigated through X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Photoelectrochemical properties were analyzed through chronoamperometry measurements. Results have shown that the FTO/BiVO4 electrode presents higher electroactivity in the electrolyte Na2SO4, leading to better current stabilization, response time, and photoinduced current density, when compared to KCl electrolyte. Besides, this electrode shows excellent performance for methylene blue degradation under visible light irradiation condition. In Na2SO4, the electrode has shown higher degradation rate, 51 %, in contrast to 44 % in KCl, plus higher rate constant, 174 × 10-4 min-1 compared to 150 × 10-4 min-1 in KCl. Results presented in this communication leads to the indication of BiVO4 thin films as alternate materials to use in heterogeneous photoelectrocatalysis, more specifically in decontamination of surface water. © 2013 Springer-Verlag Berlin Heidelberg.