187 resultados para GLASSY CARBON ELECTRODE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silver nanoparticles (Ag) were deposited on multi-walled carbon nanotube by eletroless. The hybrid Ag/MWCNT was used in the modification of glassy carbon electrode (GC) surface. The electrochemical characterization confirmed the presence of Ag in the nanocomposite has been showed that the synthesis was successful. The GC electrode modified with Ag/MWCNT film was evaluated for electro-oxidation of benzene. The electrochemical behavior presented an improvement on the catalytic surface in relation to non-modified GC electrode. The anodic peak current increased the magnitude in three times when compared with the CG electrode modified only with MWCNT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A biomimetic sensor is proposed as a promising new analytical method for determination of norfloxacin (NF) in pharmaceuticals. The sensor was prepared by modifying a glassy carbon electrode surface with a Nafion® membrane doped with poly(copper phthalocyanine) complex [poly-CuPc]. Amperometric measurements carried out with the sensor under an applied potential of -0.05 V vs Ag|AgCl in 0.1 mol L-1 acetic acid containing 1.5 × 10-3 mol L-1 hydrogen peroxide showed a linear response range from 2.0 × 10-4 to 1.2 × 10-3 mol L-1. Selectivity and interference studies were also performed. A sensor response mechanism is proposed, based on the experimental evidence. Recovery studies were carried out using environmental samples, in order to evaluate the sensor’s potential for use with these sample classes. Finally, sensor performance was evaluated using analyses of commercial formulations.