189 resultados para Fractal de Gosper
Resumo:
Neste ensaio, tomamos como problema as ações da política empresarial no Brasil, em específico a política de responsabilidade social das empresas, por entender que existe nessa iniciativa um status de inovação tecnológica que precisa ser interrogado, pois se inscreve no interior de uma racionalidade que objetiva o governo das populações e tem como instrumento técnico, para realizar esse fim, uma sociedade controlada por mecanismos de segurança. Para tanto, partimos da análise de três procedimentos efetivados por alguns projetos sociais desenvolvidos por empresas brasileiras - a pesquisa científica, o protagonismo juvenil e a metodologia participativa. A referência de análise são textos de diversas naturezas, veiculados por esses projetos e disponíveis ao acesso público.
Resumo:
Este artigo se propõe a analisar as memórias de pequenos produtores rurais do assentamento Camucim (litoral sul da Paraíba) sobre um conflito de terra ocorrido no final dos anos 70 e início dos anos 80, do século XX. Essas memórias foram obtidas através de entrevistas de história de vida, que foram submetidas à Análise de Discurso. A partir da história oral, pretende-se analisar o sentido subjetivo construído pelos narradores, através de suas memórias. Nesse sentido, o conflito é relembrado como uma luta legítima, abençoada por Deus, o que nos remete para o papel fundamental da Igreja nesse processo, através da Comissão Pastoral da Terra (CPT). Além disso, os narradores constroem uma imagem de lutadores corajosos e vitoriosos.
Resumo:
The effect of concentration on the structure of SnO2 colloids in aqueous suspension, on their spatial correlation and on the gelation process was studied by small angle x-ray scattering (SAXS). The shape of the experimental SAXS curves varies with suspension concentration. For diluted suspensions ([SnO2] less than or equal to 0.13 mol L-1), SAXS results indicate the presence of colloidal fractal aggregates with an internal correlation length xi congruent to 20 Angstrom, without any noticeable spatial correlation between them. This suggests that the aggregates are spatially arranged without any significant interaction like in ideal gas structures. For higher concentrations ([SnO2] = 0.16, 0.32, and 0.64 mol L-1), the colloidal aggregates are larger (xi = 24 Angstrom) and exhibit a certain degree of spatial correlation between them. The pair correlation function corresponding to the sol with the highest concentration (0.92 mol L-1) reveals a rather strong short range order between aggregates, characteristic of a fluid-like structure, with an average nearest-neighbor distance between aggregates d(1) = 125 Angstrom and an average second-neighbor distance d(2) = 283 Angstrom. The pair distribution function remains essentially invariant during the sol-gel transition, suggesting that gelation involves the formation of a few points of connection between the aggregates resulting in a gel network constituted by essentially linear chains of clusters..
Resumo:
The nanostructural characteristics of acid-catalyzed sonogels are studied along the aging process at 60 degreesC in saturated conditions and after the CO, supercritical extraction (aerogel). The structural evolution was studied by means of small-angle X-ray scattering (SAXS) and UV-Visible absorption techniques. The sonogel exhibits a mass fractal structure in a length scale between zeta - 1/q(0) similar to 5.3 and a(1) similar to 1/q(m) similar to 0.22 nm, as the length scale probed by SAXS. The apparent mass fractal dimension lightly increases from 2.0 for fresh gel until 2.2 for 14 days aging in wet conditions. The UV absorption also increases with the aging time in wet conditions. Both observations are consistent with the syneresis process accompanying the polycondensation progress during aging in saturated conditions. For long aging times, the wet sonogels show a light transition from a mass to a surface fractal. in a very small interval of the length scale, developing an extremely rough surface with fractal dimension D-S similar to 2.9, the fractal characteristics of the sonogels practically do not change with the alcohol exchange. With the CO2 supercritical extraction (aerogel). The interval in the length scale in which the surface fractal is defined increases, while the surface fractal dimension diminishes to D-S similar to 2.5. The mass fractal characteristics are less apparent in the aerogels. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The dynamic scale theory and fractal concepts are employed in the characterization of surface morphological properties of layer-by-layer (LBL) films from poly(o-methoxyaniline) (POMA) alternated with poly(vinyl sulfonic acid) (PVS). The fractal dimensions are found to depend on the procedures to fabricate the POMA/PVS multilayers, particularly with regard to the drying procedures. LBL films obtained via drying in ambient air show a more homogeneous surface, compared to films dried under vacuum or a flow of nitrogen, due to a uniform rearrangement of polymer molecules during solvent evaporation.
Resumo:
The effect of temperature on the oxalic acid catalyzed sono-hydrolysis of tetramethoxysilane (TMOS) was studied by means of a heat flux calorimetric method. The activation energy of the process was measured as (24.5 +/- 0.8) kJ/mol in the temperature range between 10 and 50 degreesC. The structural characteristics of the resulting sonogels, after long period of aging in saturated conditions, were studied by means of small angle X-ray scattering. The structure can be described as formed by similar to2.7 nm mean size mass fractal-like aggregates (clusters) of primary silica particles of similar to0.3 nm mean size, all imbibed in a liquid phase. The average mass fractal dimension of the clusters was found to be 2.58. The primary particle density was estimated as 2.23 g/cm(3), in good agreement with the value frequently quoted for fused silica. The volume fraction of the clusters, in the saturated sonogels was estimated as about 28%. The moment in which the meniscus of the liquid phase penetrates into the clusters under rapid evaporation process has been detected by an inflection in the first derivative of the curve of weight loss in a simple thermogravimetric test. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We report on the use of dynamic scale theory and fractal analyses in a study of the growth stages of Langmuir-Blodgett (LB) films of polyaniline and a neutral biphosphinic ruthenium complex, namely mer-[ RuCl3 (dppb)(py)] (dppb = 1,4-bis(diphenylphosphine) buthane, py = pyridine), Rupy. The LB films were deposited onto indium-tin-oxide substrates and characterized with atomic force microscopy. From the granular morphology exhibited by the films one could infer growth processes inside and outside the grains. Growth outside was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of about 2.7. As one would expect, inside the grains the morphology is close to a Euclidian surface with fractal dimension of about 2.
Resumo:
The structural evolution of aerogels prepared from TEOS sono-hydrolysis was studied as a function of the temperature of heat treatment up to 1100 degreesC by means of small angle X-ray scattering (SAXS) and density measurements. The mass fractal structure of the original wet sonogel (with scattering exponent alpha similar to 2.2) apparently transforms to a surface fractal structure in a length scale lesser than similar to1.5 nm, upon the process resulting in aerogel. Such a structural transformation is interpreted by the formation of new particles with characteristic dimension of similar to1.5 nm, with rough boundaries or electronic density fluctuations (or ultra-micropores) in their interior. The structural arrangement of these particles seem to preserve part of mass fractal characteristics of the original wet sonogel, now in a length scale greater than similar to1.5 nm. The electronic density heterogeneities in the particles start to be eliminated at around 800 degreesC and, at 900 degreesC, the particles become perfectly homogeneous, so the structure can be described as a porous structure with a porosity of similar to68% with similar to9.0 nm mean size pores and similar to4.3 nm mean size solid particles. Above 900 degreesC, a vigorous viscous flux sintering process sets in, eliminating most of the porosity and increasing rapidly the bulk density in an aerogel-glass transformation. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this work was to study fragmentation of forest formations (mesophytic forest, riparian woodland and savannah vegetation (cerrado)) in a 15,774-ha study area located in the Municipal District of Botucatu in Southeastern Brazil (São Paulo State). A land use and land cover map was made from a color composition of a Landsat-5 thematic mapper (TM) image. The edge effect caused by habitat fragmentation was assessed by overlaying, on a geographic information system (GIS), the land use and land cover data with the spectral ratio. The degree of habitat fragmentation was analyzed by deriving: 1. mean patch area and perimeter; 2. patch number and density; 3. perimeter-area ratio, fractal dimension (D), and shape diversity index (SI); and 4. distance between patches and dispersion index (R). In addition, the following relationships were modeled: 1. distribution of natural vegetation patch sizes; 2. perimeter-area relationship and the number and area of natural vegetation patches; 3. edge effect caused by habitat fragmentation, the values of R indicated that savannah patches (R = 0.86) were aggregated while patches of natural vegetation as a whole (R = 1.02) were randomly dispersed in the landscape. There was a high frequency of small patches in the landscape whereas large patches were rare. In the perimeter-area relationship, there was no sign of scale distinction in the patch shapes, In the patch number-landscape area relationship, D, though apparently scale-dependent, tends to be constant as area increases. This phenomenon was correlated with the tendency to reach a constant density as the working scale was increased, on the edge effect analysis, the edge-center distance was properly estimated by a model in which the edge-center distance was considered a function of the to;al patch area and the SI. (C) 1997 Elsevier B.V. B.V.
Resumo:
Xerogels obtained from the acid-catalyzed and ultrasound stimulated hydrolysis of TEOS were submitted to heat treatment at temperatures ranging from 60 to 1100 degreesC and studied by small-angle X-ray scattering (SAXS). The SAXS intensity as a function of the modulus of the scattering vector q was obtained in the range from q(0) = 0.19 to q(m) = 4.4 nm(-1). At 60 degreesC the xerogels exhibit an apparent surface fractal structure with a fractal dimension D-s similar to 2.5 in a length scale ranging from 1/q(1) similar to 1 to 1/q(m) similar to 0.22 nm. This structure becomes extremely rough at 120 degreesC (D-s similar to 3) and at 150 degreesC, it apparently converts to a mass fractal with a fractal dimension D similar to 2.4. This may mean an emptying of the pores with preservation of a share of the original mass fractal structure of the wet aged gel, for it had presented a mass fractal dimension D similar to 2.2. A well characterized porous structure formed by 2.0 nm mean size pores with smooth surface of about 380 m(2)/g is formed at 300 degreesC and remains stable until approximately 800 degreesC. At 900 degreesC the SAXS intensity vanishes indicating the disappearance of the pores in the probed length scale. The elimination of the nanopores occurs by a mechanism in which the number of pores diminishes keeping constant their mean size. The xerogels exhibit a foaming phenomenon above 900 degreesC and scatter following Porod's law as does a surface formed by a coarse structure. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
New silica-polypropyleneglycol ormosils (organically modified silicates) with covalent bends between the organic (polymer) and inorganic (silica) phases have been prepared by the sol-gel process. Their structural evolution during sol formation, sol-gel transition, gel aging and drying has been studied in situ by small-angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and gels exhibit features expected from fractal objects. Clusters of size around 55 Angstrom with an initial fractal dimension D = 2.4 are formed in the sol. They are constituted of small primary silica particles chemically crosslinked at the end of the polymer chains. A strong liquid-like spatial correlation between the silica particles develops during drying due to the shrinkage of the polymeric network induced by water and ethanol evaporation. The continuous increase in SAXS intensity during drying, while the interparticle distance remains constant, is a consequence of the progressive growth of the dry fraction of the total volume. After drying, the gel structure consists of a rather compact arrangement of silica particles embedded in the polypropyleneglycol matrix.
Resumo:
Transparent, flexible, and luminescent EU3+-doped siloxane-poly(ethylene glycol) (PEG) nanocomposites have been obtained by the sol-gel process. The inorganic (siloxane) and organic PEG phases are usually linked by weak bonds (hydrogen bonds or van der Waals forces), and small-angle X-ray scattering (SAXS) measurements suggest that the structure of these materials consists of fractal siloxane aggregates embedded in the PEG matrix. For low Eu3+ contents, n = 300 and n = 80, the aggregates are small and isolated and their fractal dimensions are 2.1 and 1.7, respectively. These values are close to those expected for gelation mechanisms consisting of reaction-limited cluster-cluster aggregation (RLCCA) and diffusion-limited cluster-cluster aggregation (DLCCA). For high Eu3+ content, SAYS results are consistent with a two-level structure: a primary level of siloxane aggregates and a second level, much larger, formed by the coalescence of the primary ones. The observed increase in the glass transition temperature for increasing Eu3+ content is consistent with the structural model derived from SAXS measurements. Extended X-ray absorption fine structure (EXAFS) and luminescence spectroscopy measurements indicate that under the experimental conditions utilized here Eu3+ ions do not strongly interact with the polymeric phase.
Resumo:
The dynamics of a fragmentation model is examined from the point of view of numerical simulation and rate equations. The model includes effects of temperature. The number n (s,t) of fragments of size s at time t is obtained and is found to obey the scaling form n(s,t) approximately s(-tau)t(omegasgamma e(-rhot) f(s/t(z)) where f(x) is a crossover function satisfying f(x) congruent-to 1 for x much less than and f(x) much less than 1 for x much greater than 1. The dependence of the critical exponents tau, omega, gamma and z on space dimensionality d is studied from d = 1 to 5. The result of the dynamics on fractal and nonfractal objects as well as on square and triangular lattices is also examined.
Resumo:
The kinetics of aggregation of tetraethoxysilane (TEOS)-derived silica sols, produced by acid-catalyzed and ultrasound-stimulated hydrolysis, were studied by 'in situ' measurements of small-angle X-ray scattering (SAXS) at the temperatures 40 degreesC, 60 degreesC and 70 degreesC. The results were analyzed in terms of the evolution with time (t) of the SAXS intensity probing the mass fractal characteristics of the system, the average radius of gyration (Rc,) of the clusters and the number of primary particles per cluster. The aggregation process yields mass fractal structures which exhibit a scattering exponent (alpha) practically equal to 2, in the probed length scale range (5.3 nm < 1/q < 0.22 nm), beneath and even far beyond the gel point. This suggests that a is a direct measure of the real mass fractal dimension (D) of the structure. The precursor sol (pH = 2) exhibits I nm mean sized clusters with mass fractal dimension D similar to 1.9. Increasing the pH to 4.5, the cluster mean size and the number of primary particles per cluster increase but the system keeps a more opened structure (D similar to 1.4). In the first aggregation stages, D increases up to similar to2 by incorporating primary particles to the clusters without changing their mean size. From this stage, the aggregation progresses following a thermally activated scaling law well described by R-G similar tot(1/D) in all cases. This is indicative of a diffusion-controlled cluster-cluster aggregation process. The activation energy of the process was found to be 91.7 kJ/mol. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The viscoelastic properties of siloxane-poly(oxypropylene) (PPO) nanocomposites prepared by the sol-gel process has been analyzed during gelation by dynamic rheological measurements. The changes of storage and loss moduli, complex viscosity and phase angle has been measured as a function of time showing the newtonian viscosity of the sol in the initial step of gelation, and its progressive transformation to a viscoelastic gel. The rheologic properties have been correlated to mass fractal, nearly linear growth models and percolation theory. This study, completed by quasi-elastic light scattering and Si-29 solid state nuclear magnetic resonance measurements, shows that the mechanisms of gelation of siloxane-PPO hybrids depend on the molecular weight of the polymer and on the pH of the hybrid sol. For hybrids prepared in acid medium, a polymerization involving silicon reactive species located at the extremity of the polymer chains and presenting a functionality f = 2 occurs, forming a fractal structure during the first stage of sol-gel transition. For samples prepared under neutral pH, the fractal growth is only observed for hybrids containing short polymer chains (M-w similar to 130 gmol(-1)). The fractal dimensionality determined from the change in the rheological properties, indicates that the fractal growth mechanism changes from reaction-limited to diffusion-limited aggregation when the molecular weight of the PPO increases from 130 to 4000 gmol(-1) and as catalyst conditions change from acidic to neutral. Near the gel point, these hybrid gels have the typical scaling behavior expected from percolation theory. (C) 2002 Elsevier B.V. B.V. All rights reserved.