100 resultados para Finite element model
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Purpose: The aim of this study was to assess the contributions of some prosthetic parameters such as crown-to-implant (C/I) ratio, retention system, restorative material, and occlusal loading on stress concentrations within a single posterior crown supported by a short implant. Materials and Methods: Computer-aided design software was used to create 32 finite element models of an atrophic posterior partially edentulous mandible with a single external-hexagon implant (5 mm wide × 7 mm long) in the first molar region. Finite element analysis software with a convergence analysis of 5% to mesh refinement was used to evaluate the effects of C/I ratio (1:1; 1.5:1; 2:1, or 2.5:1), prosthetic retention system (cemented or screwed), and restorative material (metal-ceramic or all ceramic). The crowns were loaded with simulated normal or traumatic occlusal forces. The maximum principal stress (σmax) for cortical and cancellous bone and von Mises stress (σvM) for the implant and abutment screw were computed and analyzed. The percent contribution of each variable to the stress concentration was calculated from the sum of squares analysis. Results: Traumatic occlusion and a high C/I ratio increased stress concentrations. The C/I ratio was responsible for 11.45% of the total stress in the cortical bone, whereas occlusal loading contributed 70.92% to the total stress in the implant. The retention system contributed 0.91% of the total stress in the cortical bone. The restorative material was responsible for only 0.09% of the total stress in the cancellous bone. Conclusion: Occlusal loading was the most important stress concentration factor in the finite element model of a single posterior crown supported by a short implant.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The torsional stiffness of chassis is one of the most important properties of a vehicle's structure and therefore its measurement is important. For the first time, the torsional stiffness was considered on the design of a prototype Baja SAE of the team from UNESP - FEG, Equipe Piratas do Vale Bardahl. According to the team's opinion, the increase of stiffness on this prototype, called MB1114, made possible a great improvement in its performance during competitions. In this work, the experimental evaluation of the torsional stiffness from this prototype is performed, detailing the analysis of results, as well as, the hysteresis' effect, least-squares regression and uncertainty analysis. It also shows that it is possible to measure the torsional stiffness of chassis with a low experimental uncertainty without expending many resources. The test rig costed R$ 32,50 due the reuse of materials and the use of instrumentation already available on campus. Furthermore, it is simple to produce and can be easily stocked. Those features are important for Baja and Formula SAE teams. Lastly, the measured value is used to validate the finite element analysis performed by the team during this prototype's design, because similar studies will be performed for the new cars. After investigating the finite element analysis, one result 13,5% higher than the measured value was reached. This difference is believed to be occurred due the imperfections of the finite element model, in other words, for not been possible to simulate every phenomena present on the real model
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).
Resumo:
This paper discusses the application of a damage detection methodology to monitor the location and extent of partial structural damage. The methodology combines, in an iterative way, the model updating technique based on frequency response functions (FRF) with monitoring data aiming at identifying the damage area of the structure. After the updating procedure reaches a good correlation between the models, it compares the parameters of the damage structure with those of the undamaged one to find the deteriorated area. The influence of the FEM mesh size on the evaluation of the extent of the damage has also been discussed. The methodology is applied using real experimental data from a spatial frame structure.
Resumo:
This paper develops a novel full analytic model for vibration analysis of solid-state electronic components. The model is just as accurate as finite element models and numerically light enough to permit for quick design trade-offs and statistical analysis. The paper shows the development of the model, comparison to finite elements and an application to a common engineering problem. A gull-wing flat pack component was selected as the benchmark test case, although the presented methodology is applicable to a wide range of component packages. Results showed very good agreement between the presented method and finite elements and demonstrated the usefulness of the method in how to use standard test data for a general application. © 2013 Elsevier Ltd.
Resumo:
In this paper, natural frequencies were analyzed (axial, torsional and flexural) and frequency response of a vertical rotor with a hard disk at the edge through the classical modal and complex analysis. The equation that rules the movement was obtained through the Lagrangian formulation. The model considered the effects of bending, torsion and axial deformation of the shaft, besides the gravitational and gyroscopic effects. The finite element method was used to discretize the structure into hollow cylindrical elements with 12 degrees of freedom. Mass, stiffness and gyroscopic matrices were explained consistently. The classical modal analysis, usually applied to stationary structures, does not consider an important characteristic of rotating machinery which are the methods of forward and backward whirl. Initially, through the traditional modal analysis, axial and torsional natural frequencies were obtained in a static shaft, since they do not suffer the influence of gyroscopic effects. Later research was performed by complex modal analysis. This type of tool, based on the use of complex coordinates to describe the dynamic behavior of rotating shaft, allows the decomposition of the system in two submodes, backward and forward. Thus, it is possible to clearly visualize that the orbit and direction of the precessional motion around the line of the rotating shaft is not deformed. A finite element program was developed using MATLAB (TM) and numerical simulations were performed to validate this model. Natural frequencies and directional frequency forced response (dFRF) were obtained using the complex modal analysis for a simple vertical rotor and also for a typical drill string used in the construction of oil wells.