94 resultados para Fenton reactions
Resumo:
Catalytic activity and selectivity of niobate-based nanostructured materials were investigated. Dry methane reforming (DMR) and ethylene homologation reaction (EHR) were selected as test reactions. KSr 2Nb5O15, Sr2NaNb5O 15 and NaSr2(NiNb4)O15 δ niobate powders were prepared by the high energy ball milling method and calcined in a reductor atmosphere. N2 adsorption isotherms, X-ray diffraction and infrared spectroscopy characterization was performed. Hydrogen pretreated niobates showed from low to moderate catalytic initial activity in DMR's test, nevertheless the materials were deactivated rapidly and the kinetic parameters associated to deactivation were estimated. Otherwise, non-treated catalysts showed a high initial activity in EHR's test and KSr2Nb 5O15 catalyst requires 24 h to the total deactivation with a high selectivity to form propylene. A reaction mechanism to the propylene formation is discussed. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The results of the histopathological analyses after the implantation of highly crystalline PVA microspheres in subcutaneous tissues of Wistar rats are here in reported. Three different groups of PVA microparticles were systematically studied: highly crystalline, amorphous, and commercial ones. In addition to these experiments, complementary analyses of architectural complexity were performed using fractal dimension (FD), and Shannon's entropy (SE) concepts. The highly crystalline microspheres induced inflammatory reactions similar to the ones observed for the commercial ones, while the inflammatory reactions caused by the amorphous ones were less intense. Statistical analyses of the subcutaneous tissues of Wistar rats implanted with the highly crystalline microspheres resulted in FD and SE values significantly higher than the statistical parameters observed for the amorphous ones. The FD and SE parameters obtained for the subcutaneous tissues of Wistar rats implanted with crystalline and commercial microparticles were statistically similar. Briefly, the results indicated that the new highly crystalline microspheres had biocompatible behavior comparable to the commercial ones. In addition, statistical tools such as FD and SE analyses when combined with histopathological analyses can be useful tools to investigate the architectural complexity tissues caused by complex inflammatory reactions. © 2012 WILEY PERIODICALS, INC.
Resumo:
The aim of the present study was to compare the degradation kinetics of low (1 mg L-1) and high (25 mg L-1) concentrations of ciprofloxacin (CIP) aiming to decrease the concentration of additives and evaluate the pH limitation by the use of low iron concentrations and organic ligands. A parameterized kinetic model was satisfactorily fitted to the experimental data in order to study the performance of photo-Fenton process with specific iron sources (iron citrate, iron oxalate, iron nitrate) under different pH medium (2.5, 4.5, 6.5). The process modeling allowed selecting those process conditions (iron source, additives concentrations and pH medium) which maximize the two performance parameters related to the global equilibrium conversion and kinetic rate of the process. For the high CIP concentration, degradation was very influenced by the iron source, resulting in much lower efficiency with iron nitrate. At pH 4.5, highest TOC removal (0.87) was achieved in the presence of iron citrate, while similar CIP conversions were obtained with oxalate and citrate (0.98 after 10 min). For the low CIP concentration, much higher conversion was observed in the presence of citrate or oxalate in relation to iron nitrate up to pH 4.5. This behavior denotes the importance of complexation also at low dosages. Appropriate additives load (320 μM H 2O2; 6 μM Fe) resulted in a CIP conversion of 0.96 after10 min reaction with citrate up to pH 4.5. © 2013 Elsevier B.V. All rights reserved.
Resumo:
In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5-4.1 nm in good agreement with the average diameter obtained by TEM (4.60-4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs' surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M S) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs. © 2013 Springer Science+Business Media Dordrecht.