335 resultados para Equações de Fredholm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permitisse estimar a área foliar de Wissadula subpeltata (Kuntze) Fries, estudaram- se correlações entre a área foliar real e o comprimento da folha ao longo da nervura principal (C ), largura máxi ma da folha (L) , comprimento do espaço entre o ponto de inserção do pecíolo na folha até a primeira ramificação da nervura principal (CE), L + C, L x C e L x CE. Todas as equações, geométricas ou lineares simples, permitiram boas estimativas da área foliar . do pont o de vista prático, sugere- se optar pela equação linear simples envolvendo o produto C x L, considerando o coeficiente linear igual a zero. Deste modo, a estimativa da área foliar de W. subpeltata pode ser feita pel a fórmula Y = 0, 85 49 (C x L), ou seja 85 ,49% do produto entre o comprimento da nervura principal e a largura máxima da folha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A maria pretinha (Solanum americanum Mill) é uma planta daninha infestante de diversas culturas e além da competição pode causar outros problemas. Nos estudos envolvendo a biologia e o controle de plantas daninhas, a área foliar é uma das mais importantes características a serem avaliadas, mas tem sido pouco estudada porque sua determinação exige equipamentos sofisticados ou utiliza técnicas destrutivas. Visando obter equações que permitissem a estimativa da área foliar desta planta daninha utilizando características lineares do limbo foliar, facilmente mensuráveis em plantas no campo, foram estudadas correlações entre a área foliar real e as seguintes características das folhas: comprimento ao longo da nervura principal (C), largura máxima do limbo (L) e o produto (C x L). Para tanto, foram mensuradas 200 folhas coletadas de plantas sujeitas às mais diversas condições ecológicas em que a espécie sobrevive, considerando-se todas as folhas das plantas desde que não apresentassem deformações oriundas de fatores, tais como, pragas, moléstias e granizo. Todas as equações, lineares simples, geométricas e exponenciais, permitiram boa estimativa da área foliar (Af) da maria pretinha. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto (C x L), a qual apresentou o menor QM Resíduo. Assim, a estimativa da área foliar de S. americanum pode ser efetuada pela equação AF = 0,5632 x (C x L), com coeficiente de determinação (R2) de valor igual a 0,9516.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Brachiaria decumbens Stapf. e Brachiaria brizantha (Hochst.) Stapf., estudaram-se correlações entre a área foliar real (Sf) e parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as equações, exponenciais, geométricas ou lineares simples, permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de B. decumbens pode ser feita pela fórmula Sf = 0,9810 x (C x L), ou seja, 98,10% do produto entre o comprimento ao longo da nervura principal e a largura máxima, enquanto que, para a B. brizantha a estimativa da área foliar pode ser feita pela fórmula SF = 0,7468 x (C x L), ou seja 74,68% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the leaf area plant are needed for agronomic and physiological studies involving plant growth. The aim of this study was to obtain a mathematical model using linear measures of leaf dimensions, which will allow the estimation of leaf area of Crotalaria juncea L. Correlation studies were conducted involving real leaf area (Sf) and leaf length (C), maximum leaf width (L) and the product between C and L. All tested models (linear, exponential or geometric) provided good estimation of leaf area (above 87%). The better fit was attained using linear model, passing or not through the origin. From a practical viewpoint, it is suggested to use the linear model involving the C and L product, using a linear coefficient equal to zero. Estimation of leaf area of Crotalaria juncea L. can be obtained using the model Sf = 0.7160 x (C*L) with a determination coefficient of 0.9712.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação matemática que, através de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Cissampelos glaberrima, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L) perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da falsa parreira-brava. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,7878 x (C x L), que equivale a tomar 78,78% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com coeficiente de correlação de 0,9307.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Brachiaria plantaginea, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar do capim-marmelada. do ponto de vista prático, deve-se optar pela equação linear simples, envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,7338 x (C x L), o que equivale a tomar 73,38% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,8754.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, por meio de parâmetros lineares dimensionais das folhas, permitisse a estimativa da área foliar de Ipomoea hederifolia e Ipomoea nil, estudaram-se correlações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. Todas as - equações exponenciais, geométricas ou lineares simples - permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de I. hederifolia pode ser feita pela fórmula Sf = 0,7583 x (C x L), ou seja, 75,83% do produto entre o comprimento ao longo da nervura principal e a largura máxima, ao passo que, para I. nil, a estimativa da área foliar pode ser feita pela fórmula Sf = 0,6122 x (C x L), ou seja, 61,22% do produto entre o comprimento ao longo da nervura principal e a largura máxima da folha.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O conhecimento da área foliar de plantas daninhas pode auxiliar o estudo das relações de interferência entre elas e as culturas agrícolas. O objetivo desta pesquisa foi determinar uma equação matemática que estime a área foliar de Merremia aegyptia, a partir da relação entre as dimensões lineares dos limbos foliares. Folhas da espécie foram coletadas de diferentes locais na Universidade Estadual Paulista, Jaboticabal, Brasil, medindo-se o comprimento (C), a largura máxima (L) e a área foliar de três tipos de folíolos. Foram estimadas equações lineares (Y = a*X) para cada tipo de folíolo. A área foliar da espécie pode ser estimada pelo somatório das áreas dos limbos foliares de cada tipo de folíolo, por meio da equação AFest = 0,547470(X) + 1,145298(Y) + 1,244146(Z), em que X indica C*L do folíolo principal e Y e Z indicam C*L médios dos folíolos primário e secundário, respectivamente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Typha latifolia, estudaram-se relações entre a área foliar real (Sf) e parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da taboa. do ponto de vista prático, sugere-se optar pela equação linear simples que envolve o produto C x L, usando-se a equação de regressão Sf = 0,9651 x (C x L), que equivale a tomar 96,51% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,9411.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Com o objetivo de obter uma equação que, através de parâmetros lineares dimensionais das folhas, permita a estimativa da área foliar de Tridax procumbens, estudaram-se relações entre a área foliar real (Sf) e os parâmetros dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L), perpendicular à nervura principal. As equações lineares simples, exponenciais e geométricas obtidas podem ser usadas para estimação da área foliar da erva-de-touro. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, usando-se a equação de regressão Sf = 0,6008 x (C x L), que equivale a tomar 60,08% do produto entre o comprimento ao longo da nervura principal e a largura máxima, com um coeficiente de determinação de 0,8731.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta pesquisa teve como objetivo obter uma equação, por meio de medidas lineares dimensionais das folhas, que permitisse a estimativa da área foliar de Momordica charantia e Pyrostegia venusta. Entre maio e dezembro de 2007, foram estudadas as correlações entre a área folia real (Sf) e as medidas dimensionais do limbo foliar, como o comprimento ao longo da nervura principal (C) e a largura máxima (L) perpendicular à nervura principal. Todas as equações, exponenciais geométricas ou lineares simples, permitiram boas estimativas da área foliar. do ponto de vista prático, sugere-se optar pela equação linear simples envolvendo o produto C x L, considerando-se o coeficiente linear igual a zero. Desse modo, a estimativa da área foliar de Momordica charantia pode ser feita pela fórmula Sf = 0,4963 x (C x L), e a de Pyrostegia venusta, por Sf = 0,6649 x (C x L).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho teve por objetivo estimar equações de regressão linear múltipla tendo, como variáveis explicativas, as demais características avaliadas em experimento de milho e, como variáveis principais, a diferença mínima significativa em percentagem da média (DMS%) e quadrado médio do erro (QMe), para peso de grãos. Com 610 experimentos conduzidos na Rede de Ensaios Nacionais de Competição de Cultivares de Milho, realizados entre 1986 e 1996 (522 experimentos) e em 1997 (88 experimentos), estimaram-se duas equações de regressão, com os 522 experimentos, validando estas pela análise de regressão simples entre os valores reais e os estimados pelas equações, com os 88 restantes, observando que, para a DMS% a equação não estimava o mesmo valor que a fórmula original e, para o QMe, a equação poderia ser utilizada na estimação. Com o teste de Lilliefors, verificou-se que os valores do QMe aderiam à distribuição normal padrão e foi construída uma tabela de classificação dos valores do QMe, baseada nos valores observados na análise da variância dos experimentos e nos estimados pela equação de regressão.