166 resultados para Electrogeneration of hydrogen peroxide
Resumo:
The influence of hydrogen charging into a quenched and tempered boron steel membrane electrode (SAE 10B22) was studied using borate buffer (pH 8.4) and NaOH solutions (pH 12.7), with or without the addition of 0.01 M EDTA. At the hydrogen input side, hydrogen charging influenced cyclic voltammograms increasing the anodic charge of iron(II) hydroxide formation, and decreasing the donor density of passive films. These results suggest that the hydrogen ingress caused instability of metallic surface, increasing the surface area activity. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Mycobacterium tuberculosis is responsible for over 8 million cases of tuberculosis (TB) annually. Natural products may play important roles in the chemotherapy of TB. The immunological activity of Davilla elliptica chloroform extract (DECE) was evaluated in vitro by the determination of hydrogen peroxide (H2O2), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-alpha) release in peritoneal macrophages cultures. DECE was also tested for its antimycobacterial activity against M. tuberculosis using the microplate alamar blue assay. DECE (50, 150, 250 µg/ml) stimulated the production of H2O2 (from 1,79 ± 0,23 to 7,27 ± 2,54; 15,02 ± 2,86; 20,5 ± 2,1 nmols) (means ± SD), NO (from 2,64 ± 1,02 to 25,59 ± 2,29; 26,68 ± 2,41; 29,45 ± 5,87 µmols) (means ± SD) and TNF-alpha (from 2,44 ± 1,46 to 30,37 ± 8,13; 38,68 ± 1,59; 41,6 ± 0,90 units/ml) (means ± SD) in a dose-dependent manner and also showed a promising antimycobacterial activity with a minimum inhibitory concentration of 62,5 µg/ml. This plant may have therapeutic potential in the immunological and microbiological control of TB.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Kinetic studies of hydrogen evolution reaction (HER) at the surface of Pt in alkaline conditions, reported in this paper, show that electrocatalytic activity is enhanced after adsorption of S-2 ions. EIS and steady-state polarization curve data pointed to an undoubted improvement in performance with the Pt-S cathode that was attributed to higher adsorbed hydrogen coverage. Experimental findings suggested an increase in the electronic density of the modified surface sites that may strengthen the interaction between H2O and the adsorption site and, consequently, accelerates the Volmer step. (c) 2006 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ferric and copper hexacyanoferrates (PB and CuHCF, respectively) were electrodeposited on glassy carbon electrodes providing a suitable catalytic surface for the amperometric detection of hydrogen peroxide. Additionally glucose oxidase was immobilized on top of these electrodes to form glucose biosensors. The biosensors were made by casting glucose oxidase-Nafion layers onto the surface of the modified electrodes. The operational stability of the films and the biosensors were evaluated by injecting a standard solution (5 mu M H2O2 for PB, 5 mM H2O2 for CuHCF and 1.5 mM glucose for both) over 5-10 h in a now-injection system with the electrodes polarized at - 50 (PB) and -200 mV (CuHCF) versus Ag/AgCl, respectively. The glucose biosensors demonstrated suitability for glucose determination: 0.0-2.5 mM (R-2 = 0.9977) for PB and 0.0-10 mM (R-2 = 0.9927) for CuHCF, respectively. The visualization of the redox catalyst modifiers (PB and CuHCF films) was presented by scanning electron micrographs. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
The oxidation of C.I. Reactive Blue 4 (RB4) by photo-Fenton process mediated by lerrioxalate was investigated under artificial and solar irradiation. The RB4 degradation in acidic medium (pH 2.5) was evaluated by the decrease in Total Organic Carbon (TOC) content and color, measured by the decrease in chromophore absorption band (600 nm). The influence of ferrioxalate and H2O2 concentrations on the dye degradation was studied and best results were obtained using 1.0 mM ferrioxalate and 10 nM of hydrogen peroxide. Under these experimental conditions, 80% of TOC and 100% of color removal were obtained for a 0.1 mM RB4 dye in 35 min of solar irradiation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A novel L-amino acid oxidase (LAO) (Casca LAO) from Crotalus durissus cascavella venom was purified to a high degree of molecular homogeneity using a combination of molecular exclusion and ion-exchange chromatography system. The purified monomer of LAO presented a molecular mass of 68 kDa and pI estimated in 5.43, which were determined by two-dimensional electrophoresis. The 71st N-terminal amino acid sequence of the LAO from Crotalus durissus cascavella presented a high amino acid sequence similarities with other LAOs from Colloselasma rhosostoma, Crotalus adamanteus, Agkistrodon h. blomhoffi, Agkistrodon h. halys and Trimeresurus stejnegeri. LAO displayed a Michaelis-Menten behavior with a kilometer of 46.7 mu M and an optimum pH for enzymatic activity of 6.5. Casca LAO induced a dose-dependent platelet aggregation, which was abolished by catalase and inhibited by indomethacin and aspirin. These results suggest that the production of H2O2 is involved in subsequent activation of inflammatory enzymes, such as thromboxane. Casca LAO also inhibited the bacterial Growth of Gram-negative (Xanthomonas axonopodis pv passiflorae) and Gram-positive (S. mutans) strains. Electron microscopy assessments of both bacterial strains suggest that the hydrogen peroxide produced by LAO induce bacterial membrane rupture and consequently loss of cytoplasmatic content. This LAO exhibited a high antileishmanic activity against the promastigote of Leishmania amazonensis in vitro, its activity was dependent on the production of hydrogen peroxide, and the 50% inhibitory concentration was estimated in 2.39 mu g/ml. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This work proposes a spectrophotometric method for the determination of hydrogen peroxide during photodegradation reactions. The method is based on the reaction of H2O2 with amonium metavanadate in acidic medium, which results in the formation of a red-orange color peroxovanadium cation, with maximum absorbance at 450 nm. The method was optimized using the multivariate analysis providing the minimum concentration of vanadate (6.2 mmol L-1) for the maximum absorbance signal. Under these conditions, the detection limit is 143 mu mol L-1. The reaction product showed to be very stable for samples of peroxide concentrations up to 3 mmol L-1 at room temperature during 180 h. For higher concentrations however, samples must be kept refrigerated (4 degrees C) or diluted. The method showed no interference of Cl- (0.2-1.3 mmol L-1), NO3- (0.3-1.0 mmol L-1), Fe3+, (0.2-1.2 mmol L-1) and 2,4-dichlorophenol (DCP) (0.2-1.0 mmol L-1). When compared to iodometric titration, the vanadate method showed a good agreament. The method was applied for the evaluation of peroxide consumption during photo-Fenton degradation of 2,4-dichlorophenol using blacklight irradiation. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The surface properties of boron-doped nanocrystalline diamond films treated with H(2) plasma was investigated in regard to their electrochemical response for phenol oxidation. The surface of these films is relatively flat formed by crystallites with sizes of about 40 nm. X-ray photoelectron spectroscopy analyses showed that electrode surface has a high amount of C-H bonds. This behavior is in agreement with Mott-Schottky plot measurements concerning the flat band potential that presented a value as expected for hydrogenated diamond surface. This electrode presented the phenol detection limit of 0.08 mg L(-1) for low phenol concentrations from 40 to 250 mu mol L(-1).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ergosterol peroxide, a presumed product of the H2O2-dependent enzymatic oxidation of ergosterol, has been isolated from yeast from yeast forms of the pathogenic fungus Sporothrix schenckii. The substance, which may have a role in fungal virulence, has been characterized mainly using spectroscopic methods (1H and 13C nuclear magnetic resonance and high resolution mass spectra). The purified compound showed a molecular formula of C28H44O3, displaying characteristic features of epidioxy sterols and was reverted to ergosterol when submitted to S. schenckii enzymatic extract.
Resumo:
Aim: To investigate pulp chamber penetration of bleaching agents in teeth following restorative procedures. Methodology: Bovine lateral incisors were sectioned 3 mm apical to the cemento-enamel junction and the coronal pulpal tissue was removed. Teeth were divided into six groups (n = 10): G1, G2 and G3 were not submitted to any restorative procedure, while G4, G5 and G6 were submitted to Class V preparations and restored with composite resin. Acetate buffer was placed in the pulp chamber and treatment agents were applied for 60 min at 37°C as follows: G1 and G4, immersion into distilled water; G2 and G5, 10% carbamide peroxide (CP) exposure; G3 and G6, 35% CP bleaching. The buffer solution was removed and transferred to a glass tube where leuco crystal violet and horseradish peroxidase were added, producing a blue solution. The optical density of the blue solution was determined spectrophotometrically at 596 nm. A standard curve made with known amounts of hydrogen peroxide was used to convert the optical density values of the coloured samples into microgram equivalents of hydrogen peroxide. Data were submitted to ANOVA and Tukey's test (5%). Results: Amounts of hydrogen peroxide found in the pulp chamber of G2 and G5 specimens (0.1833 ± 0.2003 μg) were significantly lower (P = 0.001) when compared to G3 and G6 specimens (0.4604 ± 0.3981 μg). Restored teeth held significantly higher (P = 0.001) hydrogen peroxide concentrations in the pulp chamber than intact teeth. Conclusion: Higher concentrations of the bleaching agent produced higher levels of hydrogen peroxide in the pulp chamber, especially in restored teeth.
Resumo:
Dental bleaching is a simple and conservative procedure for aesthetic restoration of vital and non-vital discolored teeth. Nevertheless, a number of studies have demonstrated the risk of tissue damage from the contact of these agents with the oral mucosa. In the current study, the genotoxic potential associated with exposure to dental bleaching agents was assessed by the single cell gel (comet) assay in vitro. Chinese hamster ovary (CHO) cells in vitro were exposed to six commercial dental bleaching agents (Clarigel Gold - Dentsply; Whitespeed - Discus Dental; Nite White - Discus Dental; Magic Bleaching - Vigodent; Whiteness HP - FGM and Lase Peroxide - DMC). The results pointed out that all dental bleaching agents tested contributed to DNA damage as depicted by the mean tail moment, being the strongest effect observed with the highest dose of hydrogen peroxide (Whiteness HP and Lase peroxide, at a 35% concentration). On the other hand, Magic Bleaching (Vigodent) induced the lowest level of DNA breakage. Negative and positive controls displayed absence and presence of DNA-damaging, respectively. Taken together, these results suggest that dental bleaching agents may be a factor that increases the level of DNA damage. A higher concentration of hydrogen peroxide produced higher noxious activities in the genome as detected by single cell gel (comet) assay.