203 resultados para EMBRYO IMPLANTATION
Resumo:
O objetivo deste trabalho foi avaliar se a suplementação com LH ao final do tratamento gonadotrófico sincroniza o tempo das ovulações e incrementa a taxa de ovulação e produção de embriões em ovelhas Santa Inês. Vinte programas de superovulação (SOV) foram realizados em delineamento cross-over (intervalo de 60 dias). No D0, um CIDR foi inserido, sendo trocado por um novo sete dias após, quando 37,5µg de d-cloprostenol foram administradas. No D12, iniciou-se o tratamento com 256mg de pFSH em 8 administrações (12/12h). No D14, o CIDR foi retirado, 200UI de eCG e 37,5µg de d-cloprostenol foram administradas. No D15, as ovelhas foram alocadas em um dos dois grupos: Controle (n=10), sem suplementação com LH, e LH (n=10), tratado com 7,5mg de LH, 24h após a remoção do CIDR. Inseminações artificiais (IA) foram realizadas 42 e 48h após a remoção do CIDR. As estruturas ovarianas foram avaliadas por laparoscopia imediatamente antes de cada IA e 5 dias após, quando os embriões foram colhidos. As ovelhas que receberam o LH tiveram maior frequência de ovulações antes de 42h (P=0,05). O tratamento com LH tendeu em incrementar a frequência de CL e diminuir a de folículos anovulatórios (P=0,08). A suplementação com LH incrementou (P=0,05) a frequência de ovelhas com alta resposta superovulatória (≥11 CL; P=0,05). em conclusão, a suplementação com LH incrementou a frequência de ovelhas com alta resposta e ovulações antes de 42h depois da remoção do CIDR, entretanto, não houve sincronia entre as ovulações. A suplementação diminuiu a frequência de folículos anovulatórios, embora a taxa de ovulação e a produção de embriões permaneceram inalteradas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ion implantation of nitrogen into samples of tempered and quenched H13 steel was carried out by plasma immersion technique. A glow discharge plasma of nitrogen species was the ion source and the negative high voltage pulser provided 10-12 kV, 60 mu s duration and 1.0-2.0 kHz frequency, flat voltage pulses. The temperatures of the samples remained between 300 and 450 degrees C, sustained solely by the ion bombardment. In some of the discharges, we used a N-2 + H-2 gas mixture with 1:1 ratio. PIII treatments as long as 3, 6, 9 and up to 12 h were carried out to achieve as thickest treated layer as possible, and we were able to reach over 20 mu m treated layers, as a result of ion implantation and thermal (and possibly radiation enhanced) diffusion. The nitrogen depth profiles were obtained by GDOS (Glow Discharge Optical Spectroscopy) and the exact composition profiles by AES (Auger Electron Spectroscopy). The hardness of the treated surface was increased by more than 250%, reaching 18.8 GPa. No white layer was seen in this case. A hardness profile was obtained which corroborated a deep hardened layer, confirming the high efficacy of the moderate temperature PIII treatment of steels. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.
Resumo:
Aim. The authors assess a modified Greenfield filter (GF) for the long-term patency, filter tilting and histopathologic alterations of the inferior vena cava (IVC).Methods. Adult sheep (n=7) underwent modified GF placement in the IVC. Cavograms were obtained every 3 months and pulmonary angiography at 12 months. Histopathologic and scanning electron microscopy (SEM) analyses were performed on the IVC explanted at 12 months.Results. Cavograms showed that all IVC were patent at the end of the study. Filter tilting occurred in 2/7 animals and extrusion of struts was not observed. Macroscopic examination at explantation showed minimal venous wall thickening. Microscopic examination showed minimal IVC fibrosis and intimal hyperplasia. SEM showed endothelium on the IVC surface at the filter implantation site and a presumed endothelial layer covering partially or totally the struts. The interface filter-IVC was covered by deposits of leucocytes and platelets. No signs of pulmonary embolism were found in all pulmonary angiograms of both groups.Conclusion. The modified filter presented good biocompatibility, stability and absence of thrombogenicity at 12 months. It presented low tendency to tilting and extrusion of struts. The long-term histopathologic alterations in vena caval wall were minimal and the appearance of the studied filters in the IVC was similar to stents placed in the arterial system.
Resumo:
Nitrogen implantation into Ti alloys at higher temperatures improves their mechanical and corrosion resistance properties by forming a thicker nitride layer. In this paper, two different sets of Ti-6Al-4V samples were plasma immersion ion implantation (PIII)-treated using nitrogen plasma, varying the treatment time from 30 to 150 min (800 degrees C) and the process temperature from 400 degrees C to 800 degrees C (t = 60 min). Nanoindentation measurements of the PIII-treated samples at 800 C during 150 min showed the highest hardness value, 24 GPa, which is about four times bigger than untreated sample hardness. The N penetration at these conditions reached approximately 150 nm as analyzed by Auger spectroscopy. on the other hand, the lowest passive current density (3 x 10(-7) A. cm(-2)) was obtained for a PIII-treated sample during 30 min at higher temperature (800 degrees C). The corrosion resistance of this sample is almost the same as for the untreated specimen. Corrosion behavior evidenced that in strong oxidizing media, all PIII-treated samples are more corrosion resistant than the untreated one. PIII processing at higher temperatures promotes smoothing of the sample surface as observed by scanning electron microscopy (SEM). Grazing incidence X-ray diffraction analyses of the untreated samples identified the two typical Ti phases, Ti alpha and Ti beta. After the implantation, Ti2N and TiO2 phases were also detected.
Resumo:
Commercial polyvinylchloride (PVC) sheets were treated by plasma immersion ion implantation, PIII. Samples were immersed in argon glow discharges and biased with 25 kV negative pulses. Exposure time to the bombardment plasma changed from 900 to 10,800 s. Through contact angle measurements, the effect of the exposure time on the PVC wettability was investigated. Independent of t, all samples presented contact angles, theta, equal to zero after the treatment. However, in some cases, surface hydrophilization was not stable, as revealed by the temporal evolution of theta. Samples bombarded for shorter periods recovered partially or totally the hydrophobic character while the one exposed for the longest time stayed highly hydrophilic. These modifications are ascribed to the Cl loss and O incorporation as shown by XPS measurements. Furthermore, the mobility of surface polar groups and the variation in the cross-linking degree can also affect the PVC wettability.
Resumo:
This study evaluated the expression of heat shock protein 70 kD (hsp70) in broiler chicken embryos subjected to cold (Experiment 1) or high incubation temperature (Experiment 11). In each experiment, fertile eggs were distributed in three incubators kept at 37.8degreesC. At day 13 (D13), D16, and D19 of incubation, the embryos were subjected to acute cold (32degreesC) or heat (40degreesC) for 4-6 hr. Immediately after cold or heat exposure, samples from the liver, heart, breast muscle, brain, and lungs of 40 embryos were taken per age and treatment (control or stressed embryos), A tissue pool from 10 embryos was used as 1 replication. The levels of hsp70 in each tissue sample was quantified by Western blot analysis. The data were analyzed in a 3 x 2 factorial arrangement of treatments with four replications. hsp70 was detected in all embryo tissues, and the brain contained 2- to 5-times more hsp70 protein compared to the other tissues in either cold or heat stressed embryos. hsp70 increases were observed in the heart and breast muscle of cold stressed embryos at D16 and D19, respectively. Heat stressed embryos showed an increase of hsp70 in the heart at D13 and D19, and in the lung at D19 of incubation. Younger embryos had higher hsp70 synthesis than older embryos, irrespective of the type of thermal stressor. The results indicate that the expression of hsp70 in broiler chicken embryos is affected by cold and heat distress, and is tissue- and age-dependent. (C) 2004 Wiley-Liss, Inc.
Resumo:
Previously, we reported that thermal conditioning at 39degreesC on days 13-17 of incubation of broiler eggs enabled thermotolerance during post-hatch growth (J. Therm. Biol. 28 (2003) 133). Tolerance to a temperature of 30degreesC was accompanied by changes in thyroid hormones and metabolic parameters. In the current study, we determined the mechanism of epigenetic heat adaptation during embryonic age by measuring blood physiological parameters that may be associated with the ultimate effects of thermal conditioning. Hatching eggs from Ross breeders were subjected to heat treatment of 39degreesC at days 13, 14, 15, 16 and 17 of incubation for 2 h per day. Control eggs were incubated at 37.6degreesC. Samples of eggs were withdrawn on each day of thermal conditioning and at internal pipping (IP) to obtain blood samples from embryos. The remaining eggs were weighed at day 18 and transferred to hatchers. The timing of IP, external pipping (EP) and hatching were monitored every 2 h. At hatch, chicks were weighed and hatchability was determined. Blood samples were obtained from samples of day-old chicks. T3, T4, corticosterone, pCO(2), pO(2) levels were determined in the blood. Blood pH was measured and T3/T4 ratios were calculated. Heat conditioning significantly increased corticosterone and pO(2) levels and blood pH but depressed pCO(2) at day 14. These were followed by a significant depression of T4 level on day 15. Remarkably, at day 16, all these parameters were back to normal as in the control embryos. Hatching was delayed by thermal conditioning probably as a result of the depressed corticosterone levels at IP. Hatchability was also lower in the heat-treated group but 1-day old chick weights were comparable to those of the controls. The result suggests that epigenetic thermal conditioning involves changes in these physiological parameters and probably serve as a method for epigenetic temperature adaptation since the same mechanisms are employed for coping with heat during post-embryonic growth. It also suggests that days 14-15 may be the optimal and most sensitive timing for evoking this mechanism during embryonic development. The adverse effects of heat treatment observed in this study may have been due to the continued exposure to heat until day 17. Fine-tuning thermal conditioning to days 14-15 only may improve these production parameters. (C) 2003 Elsevier Ltd. All rights reserved.