175 resultados para ELECTRODE PLACEMENT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Inferior Alveolar Nerve (IAN) transposition is an option for prosthetic rehabilitation in cases of moderate or even severe bone reabsorption for patients that do not tolerate removable dentures. The aim of the present report is to describe an inferior alveolar nerve transposition with involvement of the mental foramen for implant placement. The surgical procedure was performed under local anesthesia, by the inferior alveolar, lingual and buccal nerve blocking technique. Centripetal osteotomy was performed, and bone tissue was removed, leaving the nerve tissue free in the foramen area. After that, transsection of the incisor nerve was performed, and lateral osteotomy was started from the buccal direction, toward the trajectory of the IAN. The procedure was concluded, by making use of a delicate resin spatula to manipulate the vascular-nervous bundle. The drilling sequence for placing the dental implants was performed, and autogenous bone was harvested using a bone collector attached to the surgical suction appliance. After the implants were placed, the bone tissue previously collected during the osteotomies and drilling processes was placed in order to protect the IAN from contact with the implants. The surgical protocol for inferior alveolar nerve transposition, followed by implant placement presented excellent results, with complete recovery of the sensitivity, seven months after the surgical procedure.
Resumo:
The surface properties of boron-doped nanocrystalline diamond films treated with H(2) plasma was investigated in regard to their electrochemical response for phenol oxidation. The surface of these films is relatively flat formed by crystallites with sizes of about 40 nm. X-ray photoelectron spectroscopy analyses showed that electrode surface has a high amount of C-H bonds. This behavior is in agreement with Mott-Schottky plot measurements concerning the flat band potential that presented a value as expected for hydrogenated diamond surface. This electrode presented the phenol detection limit of 0.08 mg L(-1) for low phenol concentrations from 40 to 250 mu mol L(-1).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Hydrogen interaction with oxide films grown on iron electrodes at open circuit potential (E-oc) and in the passive region (+0.30 V-ECS) was studied by chronopotentiometry, chronoamperometry and electrochemical impedance spectroscopy techniques. The results were obtained in deaerated 0.3 mol L-1 H3BO3 + 0.075 mol L-1 Na2B4O7 (BB, pH 8.4) solution before, during and after hydrogen permeation. The iron oxide film modification was also investigated by means of in situ X-ray absorption near-edge spectroscopy (XANES) and scanning electrochemical microscopy (SECM) before and during hydrogen permeation. The main conclusion was that the passive film is reduced during the hydrogen diffusion. The hydrogen permeation stabilizes the iron surface at a potential close to the thermodynamic water stability line where hydrogen evolution can occur. The stationary condition required for the determination of the permeation parameters cannot be easily attained on iron surface during hydrogen permeation. Moreover, additional attention must be paid when obtaining the transport parameters using the classical permeation cell. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The electrocatalysis of dopamine has been studied using a cobalt hexacyanoferrate film (CoHCFe)-modified glassy carbon electrode. Using a rotating disk CoHCFe-modified electrode, the reaction rate constant for dopamine was found to be 3.5 x 105 cm(3) mol(-1) s(-1) at a concentration of 5.0 x 10(-5) mol L-1. When a Nafion (R) film is applied to the CoHCFe-modified electrode surface a high selectivity for the determination of dopamine over ascorbic acid was obtained. The analytical curve for dopamine presented linear dependence over the concentration range from 1.2 x 10(-5) to 5.0 x 10(-4) mol L-1 with a slope of 23.5 mA mol(-1) L and a linear correlation coefficient of 0.999. The detection limit of this method was 8.9 x 10(-6) mol L-1 and the relative standard deviation for five measurements of 2.5 x 10(-4) mol L-1 dopamine was 0.58%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The complexes: [Cu(N 3) 2(N,N-diEten)] 2, [Cu(N 3) 2(tmeen)] 2, [Cu(N 3)(NCO)(N,N-diEten)] 2, [Cu(N 3) 2(N,N′-diMeen)] 2 and [Cu(N 3)(NCO)(tmeen)] 2 were prepared, characterized and their electrochemical behavior was investigated by cyclic voltammetry and controlled potential electrolysis. Cyclic voltammograms for all complexes studied are similar and exhibit one pair of current peaks in the range of -0.65 to +0.0 V. The number of electrons obtained from controlled potential electrolysis at ca. -0.55 V for all compounds was 1.8 ≤ n ≤ 2.1, indicating that both copper(II) metallic centres in the molecule were reduced to copper (I). Comparing the peak potential values for these complexes one can observe that the redox process corresponding to copper(II)/copper(I) couple is slightly influenced by the σ-basicity of the ligands. © 1997 Soc. Bras. Química.
Resumo:
Improvement of the operational stability of amperometric sensors based on Prussian Blue (PB) modified glassy carbon electrodes is presented. The long term performance of the sensors was evaluated by injection of hydrogen peroxide (5 μM in potassium buffer) solutions in a flow-injection system during a period of 5-10 h. The following parameters were investigated and correlated with the performance of the sensor: the times for electrodeposition and electrochemical activation, temperature, storage time, pH, composition of the buffer solution and of volume sample injected. These analytical characteristics of the modified electrode can be emphasized: initial sensitivity of 0.3 A cm-2 M-1, detection limit of ca. 0.5 μM, precise results (r.s.d.< 1.5%) and possibility to carry out around 50 samples (50 μL) per hour.
Resumo:
Recently, piezoelectric cellular polypropylene (PP) was proposed as a new type of quasi-ferroelectric. The observed hysteresis of the charge density as a function of the electric field could be explained as field-dependent charging inside the gas-filled voids. Interestingly enough, the measurable poling behavior of the macroscopic dipoles formed by charges that are trapped at the internal void surfaces is phenomenologically completely identical to the cooperative poling behavior of microscopic molecular dipoles in ferroelectric polymers. Therefore, it can be assumed that charge separation (or charge redistribution) and subsequent trapping in cellular PP is a rather fast switching process. In order to examine the poling dynamics, we developed an experimental setup for pulsed poling. High-voltage pulses with a duration of 45 μs (FWHM) were applied in direct contact to two-side metallized cellular PP films. The pulsed poling yields piezoelectricity in the cellular PP. We study and discuss the dependence of the resulting piezoelectricity on the poling field. We also characterize the charge separation during application of higher electric poling fields of up to -10 kV in direct contact to the two-side metallized films for longer times.
Resumo:
This paper investigates both theoretically and experimentally the effect of the location and number of sensors and magnetic bearing actuators on both global and local vibration reduction along a rotor using a feedforward control scheme. Theoretical approaches developed for the active control of beams have been shown to be useful as simplified models for the rotor scenario. This paper also introduces the time-domain LMS feedforward control strategy, used widely in the active control of sound and vibration, as an alternative control methodology to the frequency-domain feedforward approaches commonly presented in the literature. Results are presented showing that for any case where the same number of actuators and error sensors are used there can be frequencies at which large increases in vibration away from the error sensors can occur. It is also shown that using a larger number of error sensors than actuators results in better global reduction of vibration but decreased local reduction. Overall, the study demonstrated that an analysis of actuator and sensor locations when feedforward control schemes are used is necessary to ensure that harmful increased vibrations do not occur at frequencies away from rotor-bearing natural frequencies or at points along the rotor not monitored by error sensors.
Resumo:
Iron nitroprusside Fe(II)NP was incorporated into a carbon paste electrode and the electrochemical studies were performed with cyclic voltammetry. The cyclic voltammogram of Fe(II)NP exhibits two redox couple with formal potential (E0')1 = 0.24 e (E0')2 = 0.85 V vs SCE attributed to Fe(II)/Fe(II) and Fe (II)(CN)5NO/Fe(III)(CN)5NO, respectively. The redox couple with (E0')2 = 0.85 V presents an electrocatalytic response for sulfhydryl compounds. The electrocatalytic oxidation of sulfhydryl compounds by the mediator has been used for the determination of L-cysteine and N-acetylcysteine. The modified graphite paste electrode gives a linear range from 9.2 x 10-4-2.0 x 10-2;; 9.6 x 10-4-1.4 x 10-2mol L-1 for the determination of L-cysteine and N-acetylcysteine, respectively, with detection limit of 1.9 x 10-4 mol L-1;; 1.5 x 10 -4 mol L-1 and relative standard desviations ± 5% and 1.5 x 10-3 mol L-1 ± 4% (n=3). The amperometric sensitivities are 0.024 and 0.027 μA/μmol L-1 for L-cysteine and N-acetylcysteine, respectively. The application of this electrode was tested and a commercial pharmaceutical product (Fluimucil) has been determined.
Resumo:
A flow-injection system with a glassy carbon disk electrode modified with Prussian Blue film is proposed for the determination of persulfate in commercial samples of hair bleaching boosters by amperometry. The detection was obtained by chronoamperometric technique and the sample is injected into the electrochemical cell in a wall jet configuration. Potassium chloride at concentration of 0.1 mol L-1 acted as sample carrier at a flow rate of 4.0 mL min-1 and supporting-electrolyte. For 0.025 V (vs. Ag/AgCl) applied voltage, the proposed system handles ca. 160 samples per hour (1.0 10-4 - 1.0 10-3 mol L-1 of persulfate), consuming about 200 μL sample and 11 mg KCl per determination. Typical linear correlations between electrocatalytic current and persulfate concentration was ca. 0.9998. The detection limit is 9.0 10-5 mol L-1 and the calculated amperometric sensibility 3.6 103 μA L mol -1. Relative standard deviation (n =12) of a 1.0 10-4 mol L-1 sample is about 2.2%. The method was applied to persulfate determination in commercial hair-bleaching samples and results are in agreement with those obtained by titrimetry at 95% confidence level and good recoveries (95 - 112%) of spiked samples were found. © 2003 by MDPI.