104 resultados para Col·lisions (Física nuclear)
Resumo:
Proteínas que apresentam atividades no núcleo e possuem sequência de localização nuclear (NLS) tem seu deslocamento dependente do heterodímero importina-α/β. A importina- (ImpA) é responsável pelo reconhecimento inicial do substrato a ser importado através da interação com os NLS. Os sinais são caracterizados por apresentar um ou mais grupos de aminoácidos básicos, denominados como sequências monopartidas e bipartidas. O fungo Neurospora crassa vem sendo utilizado há mais de 70 anos como organismo modelo em estudos de expressão gênica, desenvolvimento e diferenciação celular, ritmo circadiano, defesa do genoma, bem como outros aspectos da biologia de eucariotos. A presença de um grande número de genes no genoma de N. crassa ainda com funções desconhecidas aponta este organismo como um promissor modelo para o estudo de novos mecanismos genéticos e bioquímicos ainda não identificados. Considerando a importância do metabolismo do glicogênio para os organismos, o presente trabalho teve como objetivo o estudo estrutural de complexos de ImpA com peptídeos NLSs (NCM e NCB) de proteínas envolvidas no metabolismo de glicogênio do fungo N. crassa, utilizando técnicas de cristalografia de proteínas. Monocristais dos complexos ImpA-NCM e ImpA-NCB foram obtidos para a coleta dos dados de difração de raios-X, resultando em dois conjuntos de dados à 2,1Å e 2,45Å de resolução, respectivamente. Após elucidação da estrutura da ImpA, mapas de densidade eletrônica gerados revelaram uma densidade eletrônica no sítio principal de reconhecimento de NLS da ImpA de ambas estruturas, possibilitando modelagem dos peptídeos. Em uma comparação do mapa de densidade eletrônica obtido de ambos complexos com um mapa de uma estrutura nativa de ImpA (70-529) coletada à 2,0Å de resolução, a qual usualmente apresenta um peptídeo “contaminante” no sitio de ligação... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
The Therapy with proton beam has shown more e ective than Radiotherapy for oncology treatment. However, to its planning use photon beam Computing Tomography that not considers the fundamentals di erences the interaction with the matter between X-rays and Protons. Nowadays, there is a great e ort to develop Tomography with proton beam. In this way it is necessary to know the most likely trajectory of proton beam to image reconstruction. In this work was realized calculus of the most likely trajectory of proton beam in homogeneous target compound with water that was considered the inelastic nuclear interaction. Other calculus was the analytical calculation of lateral de ection of proton beam. In the calculation were utilized programs that use Monte Carlo Method: SRIM 2006 (Stopping and Range of Ions in Matter ), MCNPX (Monte Carlo N-Particle eXtended) v2.50. And to analytical calculation was employed the software Wolfram Mathematica v7.0. We obtained how di erent nuclear reaction models modify the trajectory of proton beam and the comparative between analytical and Monte Carlo method
Resumo:
After the discovery of ionizing radiation, its applications in various fields of science began to take significant proportions. In the case of medicine, there are the application areas in radiotherapy, diagnostic radiology and nuclear medicine. It was then necessary to create the field of radiological protection to establish the conditions necessary for the safe use of such ionizing radiation. Apply knowledge obtained during the graduation stage and in the practice of radiological protection in the areas of nuclear medicine and diagnostic radiology. In the area of nuclear medicine, tests were made in the Geiger-Muller counters (GM) and the dose calibrator (curiometer), the monitoring tests of radiation, waste management, clean of the Therapeutic room and testing the quality control of gamma-chambers. In the area of radiology, were performed tests of quality control equipment for conventional X-ray equipment and x-ray fluoroscopy, all following the rules of the National Health Surveillance Agency (ANVISA), and reporting of tests. The routine developed in the fields of nuclear medicine in hospitals has proved very useful, since the quality control of GM counters contribute to the values of possible contamination are more reliable. The control of dose calibrator enables the patient not to receive different doses of the recommended amounts, which prevents the repetition of tests and unnecessary exposure to radiation. The management of waste following the rules and laws established and required for its management. Tests for quality control of gamma chambers help to evaluate its medical performance through image. In part of diagnostic radiology, tests for quality control are performed in order to verify that the equipment is acceptable for usage or if repairs are needed. The knowledge acquired at the internship consolidated the learning of graduation course
Resumo:
Nuclear medicine is a medical specialty related to imagery that deals with imaging techniques, diagnosis and therapy, allowing observing the physiological state of tissues noninvasively by marking the molecules participating of these physiological processes with radioactive isotopes, thus creating the called radionuclides. The image of a radionuclide is one of the most important applications of radioactivity in nuclear medicine. The equipment’s of nuclear medicine imaging use the principle of radiation detection, turning it into an electrical signal which, through specific algorithms, allows forming tomographic images that provide information about the functional status of organs. New detection systems have been developed for tomographic acquisitions using solid state detectors. These devices use crystals of cadmium zinc telluride (CdZnTe). Some of the advantages of this detector are a significant improvement of signal to noise ratio, the increased spectral and spatial resolution, which in sum, result in greater clarity of the images obtained, opening new perspectives for imaging protocols previously unattainable. In contrast, all other gamma-cameras equipped with vacuum tubes have remained relatively unchanged for nearly fifty years. In these gamma-cameras, the images are obtained using two steps significantly less efficient: the gamma rays are converted to light through a first device, and then the light is converted into an electrical signal through a second device. One of functions the Medical Physicist is related to the quality control of equipment. This control ensures that the information and images provided are true and thus credible to be used in medical reports. To perform this type of analysis the physicist must understand the performance characteristics and operation of all equipment of the department concerned; besides, in the absence of specific legislation, proposing...(Complete abstract click electronic access below)
Resumo:
The plasma represents a average of the information referring biochemists to the physiology of the organism as a whole, therefore it indirectly or directly interacts with all tissues of the body. In such a way the plasma can be considered as a metabolic “soup”. Using the Nuclear Magnetic Resonance Spectroscopy sanguineous plasma spectra had been generated and using deconvolution techniques it was possible to know the contribution of the albumin for the formation of the spectra of the sanguineous plasma
Resumo:
Nuclear Medicine is a medical modality of therapy and diagnostic imaging using unsealed radioactive sources for its purposes. This routine activity promotes the transit of radioactive sources for the area of installation, beyond the transit of patients injected with radioisotope, which also contribute to raising the radiometric level of environment. As a consequence, it has exposured workers and public individuals to the ionizing radiation. There are protective mechanisms of radiation exposure, personal protective equipments, and measurement planes established in standard measurement at certain points of the environment in order to identify any increase in radiometric levels and \ or contamination, but do not cover the entire space occupied by workers and patients. To accomplish with the individual dose limits established by the National Commission of Nuclear Energy, it is interesting if there is an individualized classification for each Nuclear Medicine service. This work aimed to promote an analysis of the radiometric level distribution across the extent of the Technical Nuclear Medicine Sector of Hospital of the Botucatu Medical School, and produce a spatial map to identify locations with higher exposure rate to the ionizing radiation, can be used as a risk map to assist the Occupationally Exposed Individuals (IOE). To perform the radiometric levels checking it was used a digital Geiger-Muller detector available in the sector, due to its practicality compared to other detectors. Measurements were carried out at four different times for all days of the week, at points strategically established to cover all the installation
Resumo:
We evaluate the potential for searching for isosinglet neutral heavy leptons (N), such as right-handed neutrinos, in the next generation of e+e- linear colliders, paying special attention to contributions from the reaction γe→WN initiated by photons from beamstrahlung and laser back-scattering. We find that these mechanisms are both competitive and complementary to the standard e+e-→vN annihilation process for producing neutral heavy leptons in these machines and greatly extends the search range over HERA and LEP200.
Resumo:
In this work we present a didactic proposal to use song lyrics for Physics Teaching aimed to High School level. Based on the work proposed by Zanetic (1990) that Physics is also Culture, we understand that its influence extends beyond the scientific boundaries, reaching spheres of knowledge where its presence is less obvious, such as the arts, especially Music. Based on proposals for Ramos and Gomes (2013), activities were conducted in two groups of second year of high school in the city of Rio Claro, each with an approach. In one of the classes the students received as material the lyrics of the songs printed and the other students were given a table along with the lyrics. In these materials the students identified physical concepts present in the songs Nuclear Shelter of the São Paulo band Premeditando the Breque and Manhattan Project of the Canadian band Rush. We observed during activities an improvement in the participation of students in theoretical discussions, probably due to a more favorable context for students to express themselves assigned by us to the activities with the songs. After performing the activities we demonstrated that you can enter the Music in the classroom not only as entertainment but as an aid in research and understanding of physical concepts
Resumo:
Higgs bosons can have a substantial invisible branching ratio in many extensions of the Standard Model, such as models where the Higgs bosons decay predominantly into light or massless weakly interacting Goldstone bosons. In this work, we examine the production mechanisms and backgrounds for invisibly decaying Higgs bosons at the Next Linear e+e- Collider operating in the modes e+e-, eγ, and γγ. We demonstrate that such machine is much more efficient to survey for invisibly decaying Higgs bosons than the Large Hadron Collider at CERN.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)