97 resultados para Chloride diffusivity
Resumo:
Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the effect of the addition of 5% calcium chlorite (CaCl2) on pH values in calcium hydroxide pastes (CH), with or without 2% chlorhexidine digluconate (CHX) used as vehicle, in several periods analysis. Polyethylene tubes were filled with CH mixed with water (G1), 2% CHX solution (G2) or gel (G3), or CHX solution or gel with 5% CaCl2 (G4 and G5, respectively). All tubes were individually immersed in distilled water. After 12, 24 hours, 7, 14 and 28 days, pH value was evaluated directly in water which the tubes were stored. Data were submitted to ANOVA and Tukey tests (α=0.05). In 24 hs and 14 days, pH values were similar to all groups. In 12 hs, the G1 presented lower pH value than other groups except to G4 (p < 0.05), and G4 presented lower pH value than G5 (p < 0.05). In 7 days, G1 presented lower pH value than G4 and G5 (p < 0.05). In 28 days, G1 and G5 presented lower pH values than G2 and G4 (p < 0.05) and among other groups there are no statistical differences (p > 0.05). The pH values increased in long-term analysis to all CH pastes. The association of 5% calcium chloride with 2% CHX solution as vehicle of CH paste provided a pH value increase in relation to CH mixed with distilled water. The CHX gel interfered negatively on pH value in comparison to CHX solution when mixed with CaCl2.
Resumo:
Objective: The purpose of this study was to evaluate the influence of the addition of 2% chlorhexidine digluconate (CHX) associated with 5% calcium chloride (CaCl2 ) on antimicrobial activity, setting time, pH and calcium release of gray mineral trioxide aggregate (GMTA). Materials and Methods: GMTA powder was mixed with water, 2% CHX alone or 2% CHX combined with 5% CaCl2 . Antimicrobial activity was determined against Enterococcus faecalis (ATCC 29212) strains by agar diffusion test. Data obtained were submitted to kruskal wallis tests. Analysis of the setting time was evaluated by American society for testing and materials C266-03 requirements. The pH and calcium release analysis were evaluated, in 24 h, 7, 14 and 28 days using pH meter equipment and atomic absorption spectrophotometer, respectively. Data obtained were analyzed by ANOVA, in 5% significance level. Results: Significant differences were seen (P < 0.01) among the zones of bacterial growth inhibition produced by 5% CaCl2 + 2% CHX combination against E. faecalis when compared with water (P < 0.05). Regarding the setting time, that combination had the shortest setting time (P < 0.05). All associations were alkaline and released calcium. No statistical difference was observed between the experimental groups at the different periods of analysis (P > 0.05). Conclusion: Combination of 5% CaCl2 + 2% CHX reduced the setting time and enhanced the antimicrobial activity of GMTA without changing the pH and calcium release.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In situ megascale hydraulic diffusivities (D) of a confined loess aquifer were estimated at various scales (10 <= L <= 1500 m) by a finite difference model, and laboratory microscale diffusivities of a loess sample by empirical formulas. A scatter plot reveals that D fits to a single power function of L, providing that microscale diffusivities are assigned to L = 1 m and that differences in diffusivity observed between micro- and megascales are assigned to medium heterogeneity appraised by variations in the curvature and slope of natural hydraulic head waves propagating through the aquifer. Subsequently, a general power relationship between D and L is defined where the base and exponent terms stand for the aquifer storage capability under a confined regime of flow, for the microscale hydraulic conductivity and specific yield of loess, and for the changes in curvature and slope of hydraulic head waves relative to values defined at unit scale.[GRAPHICS]Editor Z.W. Kundzewicz
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sodium chloride intake was studied in rats submitted to different neurosurgical procedures. Intake decreased in animals submitted to bilateral destruction of the basolateral amygdaloid complex, and increased after the same animals were submitted to destruction of the anterior lateral hypothalamus, a procedure which is known to cause increased intake in intact rats. In the reverse experiment, where the anterior lateral hypothalamus was destroyed before the basolateral amygdaloid complex, the effect of increased sodium chloride intake induced by destruction of the hypothalamus overcame the decreased expected upon destruction of the amygdaloid complex. These results permit us to conclude that the hypothalamic areas which inhibit sodium chloride intake predominate over the stimulating areas of the amygdaloid complex in the control of sodium chloride intake. © 1981 ANKHO International Inc.