125 resultados para Cassava wastewater
Electrochemical oxidation of wastewater containing aromatic amines using a flow electrolytic reactor
Resumo:
Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
An Advanced Oxidation Process (AOPs) was carried out in this study with the use of immobilized ZnO and solar/UV as an energy source to degrade dairy wastewater. The semibatch reactor system consisted of metal plate of 800 × 250 mm and a glass tank. The reaction time was of 3 h for 3 L of dairy wastewater. Experiments were performed based on a surface response methodology in order to optimize the photocatalytic process. Degradation was measured in percentage terms by total organic carbon (TOC). The entry variables were ZnO coating thickness and pH, using three levels of each variable. The optimized results showed a TOC degradation of 31.7%. Optimal parameters were metal-plate coating of 100 m of ZnO and pH of 8.0. Since solar/UV is a constant and free energy source in most tropical countries, this process tends to suggest an interesting contribution in dairy wastewater treatment, especially as a pretreatment and the optimal conditions to guarantee a better efficiency of the process. © 2013 Gisella R. Lamas Samanamud et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
In this study it was evaluated the efficiency of the treatment of wet-processed coffee wastewater in upflow anaerobic sludge blanket (UASB) reactors in two stages, in bench scale, followed by post-treatment with activated sludge in batch. The first UASB reactor was submitted to an hydraulic retention time (HRT) of 6.2 d and organic loading rates (OLR) of 2.3 and 4.5g CODtotal (L d)-1, and the second UASB reactor to HRT of 3.1 d with OLR of 0.4 and 1.4g CODtotal (L d)-1. The average values of the affluent CODtotal increased from 13,891 to 27,926mg L-1 and the average efficiencies of removal of the CODtotal decreased from 95 to 91%, respectively, in the UASB reactors in two stages. The volumetric methane production increased from 0.274 to 0.323L CH4 (L reactor d)-1 with increment in the OLR. The average concentrations of total phenols in the affluent were of 48 and 163mg L-1, and the removal efficiencies in the UASB reactors in two stages of 92 and 90%, respectively, and increased to 97% with post-treatment. The average values of the removal efficiencies of total nitrogen and phosphorus were of 57 to 80% and 44 to 60%, respectively, in the UASB reactors in two stages and increased to 91 and 84% with the post-treatment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The opportunity to supplement common cassava biscuits with a product of higher nutritional value meets consumer expectations. In this work it was studied the effects of process parameters and flaxseed addition on physical properties of expanded snacks. Extrusion process was carried out using a single screw extruder in a factorial central composite rotatable design with four factors: flaxseed flour percentage (0-20%), moisture (12-20%), extrusion temperature (90-130 °C) and screw speed (190-270). The effect of extrusion variables was investigated in terms of expansion index, specific volume, water absorption index, water solubility index, color parameters (L*, a* ,b*) and hardness. The data analysis showed that variable parameters of the extrusion process and flaxseed flour affected physical properties of puffed snacks. Among the experimental conditions used in the present study, expanded snack products with good physical properties can be obtained under the conditions of 10% flaxseed flour, 230 rpm screw speed, temperature of 90 °C and moisture of 12%.
Resumo:
Short cooking time and ability to blend varieties of food ingredients have made extrusion cooking a medium for low-cost and nutritionally improved food products. The effect of moisture, extrusion temperature and amount of turmeric flour mixed with cassava flour on physical characteristic of puffed snacks was evaluated in this work. Extrusion process was carried out using a single-screw extruder in a factorial central composite design with four factors. Results showed effect of extrusion parameters on dependents variables. High expansion, low browning, low water solubility index, intermediate water absorption index and high crispness desirable characteristics to puffed snacks are obtained in conditions of 12% moisture, 5% turmeric flour, 105º C of temperature and 250 rpm of screw speed. These paper point to the potential still unexplored of the use of flours of cassava and turmeric as raw materials in the development of extruded puffed snacks.
Electrochemical method for quantitative determination of trace amounts of disperse dye in wastewater
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present research was undertaken to explore the influence of fructooligosaccharides (FOS) on the functional and thermal properties of sour cassava starch and the quality characteristics of gluten-free (GF) cheese bread. Fructooligosaccharides were used to replace sour cassava starch at substitution level of 9% (SF1), 17% (SF2), and 29% (SF3). The functional and thermal properties of the starch-FOS mixtures were determined by the water absorption index (WAI), water solubility index (WSI), pasting profile analysis, thermal transition temperatures and enthalpy of gelatinization. Moreover, the GF cheese breads with starch-FOS mixtures were analyzed for height, diameter, weight, specific volume and dough moisture content. The sample with the highest FOS content (SF3) presented the lowest WAI (1.44), peak (62.4 rapid visco units (RVU), breakdown (53.4 RVU), final (13.8 RVU), and setback (4.9 RVU) viscosities, dough moisture content (31.7%), and enthalpy of gelatinization (9.5 J/g) and the highest WSI (29.4%) and pasting temperature (69.1 degrees C). The height, diameter and specific volume of GF cheese bread samples made from sour cassava starch were 3.14 cm, 6.35 cm, and 1.49 cm(3)/g, respectively. The SF1 mixture samples resulted in a 3.01 cm height, 6.34 cm diameter, and 1.55 cm(3)/g specific volume. According to Brazilian food labeling regulations, the latter product cannot be categorized as a good source of fiber because the minimum level of fiber per portion was not reached.
Resumo:
Cassava leaves have been widely used as a protein source for ruminants in the tropics. However, these leaves contain high level of hydro-cyanic acid (HCN) and condensed tannins (CT). There are evidences that making hay can eliminate more than 90% of HCN and that long-term storage can reduce CT levels. A complete randomized design with four replicates was conducted to determine the effect of different storage times (0-control, 60, 90 and 120 days) on chemical composition, in vitro rumen fermentation kinetics, digestibility and energy value of cassava leaves hay. Treatments were compared by analyzing variables using the GLM procedure (SAS 9.1, SAS Institute, Inc., Cary, NC). Crude protein (CP) and ether extract (EE) of the cassava hay were not affected (P > 0.05) by storage time (17.7% and 3.0%, respectively). Neutral detergent fiber, acid detergent fiber, total carbohydrate and non-fiber carbohydrate were not affected either (P>0.05) by storage time (47.5, 32.6, 72.3 and 25.8% respectively). However, other parameters were influenced. CT was lower (P<0.05) in hay after 120 days of storage compared with control (1.75% versus 3.75%, respectively). Lignin and insoluble nitrogen in neutral detergent, analyzed without sodium sulfite, were higher (P<0.01) after 120 days of storage, compared with the control (11.22 versus 13.57 and 1.65 versus 3.81% respectively). This suggests that the CT has bound to the fiber or CP and became inactive. Consequently, the in vitro digestibility of organic matter (50.36%), total digestible nutrients (44.79%) and energy (1.61 Mcal/KgMS), obtained from gas production data at 72 h of incubation, has increased (P<0.05) with storage times (56.83%, 51.53% and 1.86 Mcal/KgMS, respectively). The chemical composition and fermentative characteristics of cassava hay suffered variations during the storage period. The best values were obtained after 90 days of storage. This is probably due to the reduction in condensed tannins.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The properties of a previously unknown enzyme, denominated cyclodextrin glycosyltransferase, produced from Bacillus lehensis, were evaluated using affinity chromatography for protein purification. Enzyme characteristics (optimum pH and temperature; pH and temperature stability), the influence of substances on the enzyme activity, enzyme kinetics, and cyclodextrin production were analysed. Cyclodextrin glycosyltransferase was purified up to 320.74-fold by affinity chromatography using beta-cyclodextrin as the binder and it exhibited 8.71% activity recovery. This enzyme is a monomer with a molecular weight of 81.27 kDa, as estimated by SDS-PAGE. Optimum temperature and pH for cydodextrin glycosyltransferase were 55 degrees C and 8.0, respectively. The Michaelis-Menten constant was 8.62 g/l during maximum velocity of 0.858 g/l.h.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)