100 resultados para California. State Banking Dept.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this research was to study the utilization of residues from bamboo (Dendrocalamus giganteus) lamination in the manufacturing of panels for structural purposes. Bamboo particleboards were produced under three conditions: pure boards, reinforced with bamboo laminas, and with treated particles. Castor oil-based polyurethane was the resin binder, in view of using lower toxicity materials. The mechanical tests were performed according to Brazilian Standard (NBR) 14810-3 (2006) and European Standard (EN) 310 (2000). The results were superior to those recommended by these and other standards for internal adhesion resistance, modulus of rupture, and elasticity in static bending, as well as to the results of other studies. Starch treatment was an unnecessary stage. According to the conditions of this process, the studied panels showed a good potential for construction use. Moreover, the bamboo particleboards are an economically viable, environmentally friendly, and sustainable alternative for the use of waste generated during the processing of Dendrocalamus giganteus bamboo species, allied with castor oil-based polyurethane resin. The reinforced particleboard and its production process are being licensed as an Innovation Patent in Brazil, (BR 1020130133919-1-2013).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of the addition of bamboo laminas of the species Dendrocalamus giganteus to three-layer medium density particleboard (MDP). These laminas were glued onto both the top and the bottom of each panel. With the manufactured panels laminated with bamboo, mechanical tests based on the Brazilian Standard ABNT NBR 14810 were carried out to determine the modulus of rupture (MOR) in static bending and the tensile strength parallel-to-surface. These mechanical tests were realized in particleboards of eucalyptus and in reinforced particleboard, both produced in the laboratory. The modulus of rupture and tensile strength parallel-to-surface of the laminated MDP had values close to those that have been reported. The reinforcements increased the values of these studied properties. Nevertheless, this fact indicated the possibility to produce a stronger MDP using bamboo lamina as surface layers. These results show the possibility of using coatedbamboo MDP for utilization in large spans, for example, in flooring for mezzanines with finish on both sides, and for robust furniture as bookshelves, beds, tables, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims with the use of linear matrix inequalities approach (LMIs) for application in active vibration control problems in smart strutures. A robust controller for active damping in a panel was designed with piezoelectrical actuators in optimal locations for illustration of the main proposal. It was considered, in the simulations of the closed-loop, a model identified by eigensystem realization algorithm (ERA) and reduced by modal decomposition. We tested two differents techniques to solve the problem. The first one uses LMI approach by state-feedback based in an observer design, considering several simultaneous constraints as: a decay rate, limited input on the actuators, bounded output peak (output energy) and robustness to parametic uncertainties. The results demonstrated the vibration attenuation in the structure by controlling only the first modes and the increased damping in the bandwidth of interest. However, it is possible to occur spillover effects, because the design has not been done considering the dynamic uncertainties related with high frequencies modes. In this sense, the second technique uses the classical H. output feedback control, also solved by LMI approach, considering robustness to residual dynamic to overcome the problem found in the first test. The results are compared and discussed. The responses shown the robust performance of the system and the good reduction of the vibration level, without increase mass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)