247 resultados para CATALASE
Resumo:
Caloric intake is higher than recommended in many populations. Therefore, enhancing olive oil intake alone may not be the most effective way to prevent cardiovascular diseases. The purpose of the present study was to analyse the association of olive oil and dietary restriction on lipid profile and myocardial antioxidant defences. Male Wistar rats (180-200 g, n = 6) were divided into 4 groups: control ad libitum diet (C), 50% restricted diet (DR), fed ad libitum and supplemented with olive oil (3 mL/(kg-day)) (OO), and 50% restricted diet and supplemented with olive oil (DROO). After 30 days of treatments, OO, DR, and DROO groups had increased total cholesterol and high-density lipoprotein cholesterol concentrations. DR and DROO animals showed decreased low-density lipoprotein cholesterol. DROO had the lowest low-density lipoprotein cholesterol concentration. Total lipids and triacylglycerols were raised by dietary restriction and diminished by olive oil. OO rats had higher myocardial Superoxide dismutase and lower catalase and glutathione peroxidase activities than C rats. DR and DROO showed enhanced cardiac Superoxide dismutase, catalase, and glutathione peroxidase activities from the control. Olive oil supplementation alone improved the lipid profile but was more effective when coupled with dietary restriction. There was a synergistic beneficial action of dietary restriction and olive oil on serum lipids and myocardial antioxidant defences.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H2O2 into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H2O2 in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H2O2 release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H2O2 concentration in seawater (R = 0.673), total superoxide dismutase activity (R = 0.689), and particularly indexes of protein (R = 0.869) and lipid oxidation (R = 0.864), were moderately correlated. These data suggest that the release of H2O2 from plastids into seawater possibly impaired efficient and immediate responses of pivotal H2O2-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Reactive oxygen species (ROS) have been shown to modulate neuronal synaptic transmission and may play a role on the autonomic control of the cardiovascular system. In this study we investigated the effects produced by hydrogen peroxide (H 2O 2) injected alone or combined with the anti-oxidant agent N-acetil-l-cysteine (NAC) or catalase into the fourth brain ventricle (4th V) on mean arterial pressure and heart rate of conscious rats. Moreover the involvement of the autonomic nervous system on the cardiovascular responses to H 2O 2 into the 4th V was also investigated. Male Holtzman rats (280-320 g) with a stainless steel cannula implanted into the 4th V and polyethylene cannulas inserted into the femoral artery and vein were used. Injections of H 2O 2 (0.5, 1.0 and 1.5 μmol/0.2 μL, n = 6) into the 4th V produced transient (for 10 min) dose-dependent pressor responses. The 1.0 and 1.5 μmol doses of H 2O 2 also produced a long lasting bradycardia (at least 24 h with the high dose of H 2O 2). Prior injection of N-acetyl-l-cysteine (250 nmol/1 μL/rat) into the 4th V blockade the pressor response and attenuated the bradycardic response to H 2O 2 (1 μmol/0.5 μL/rat, n = 7) into the 4th V. Intravenous (i.v.) atropine methyl bromide (1.0 mg/kg, n = 11) abolished the bradycardia but did not affect the pressor response to H 2O 2. Prazosin hydrochloride (1.0 mg/kg, n = 6) i.v. abolished the pressor response but did not affect the bradycardia. The increase in the catalase activity (500 UEA/1 μL/rat injected into the 4th V) also abolished both, pressor and bradycardic responses to H 2O 2. The results suggest that increased ROS availability into 4th V simultaneously activate sympathetic and parasympathetic outflow inducing pressor and bradycardic responses. © 2006 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated the transmission of Aggregatibacter actinomycetemcomitans (Aa) in women with severe chronic periodontitis and their children. Thirty women (mean age = 36.1±6.0 years) who were mothers of at least one child aged 7 to 16 years were enrolled. In order to investigate mother-child transmission of Aa, the children were also evaluated when their mothers were colonized by the bacterium. Subgingival plaque samples of each woman were collected from 3 sites (mean probing depth of 7.3±1.2 mm and mean clinical attachment level of 7.9±1.5 mm) and pooled in reduced transport fluid (RTF). These samples were processed, inoculated onto TSBVagar selective medium and incubated at 37°C in microaerophilic atmosphere for 5 days. Aa was identified on the basis of colony morphology, Gram staining, catalase and oxidase reactions. Aa was found in 8 out of 30 women. Therefore, 8 children from these women (mean age= 12 ± 3.7 years) were evaluated, but Aa was found only in 2 of them. Aa strains of the two mother-child pairs were evaluated by arbitrarily-primed polymerase chain reaction (AP-PCR), although it was not found similarity between the amplitypes of each pair. No Aa transmission was found between Brazilian women with severe chronic periodontitis and their children.
Resumo:
A Streptomyces was isolated from poultry plant wastewater, showed high keratinolytic activity when cultured on feather meal medium. Optimum keratinolytic activity was observed at 40°C and pH 8.0. The enzyme also showed to be stable between 40 and 60°C. The keratinolytic activity was not inhibited by EDTA, DMSO and Tween 80. On the other hand, CaCl2, ZnCl2, and BaCl2 slightly inhibited the keratinolytic activity. The Streptomyces isolated might be useful in leather, keratin waste treatment, animal feeding industry, and also cosmetic industry. © 2008 Academic Journals.
Resumo:
The aim of this study was to investigate whether handling and acclimatization could affect the biomarker responses in oysters Crassostrea gigas. Adult oysters were sampled in a farming area, subjected to handling stress during two hours (shell cleaning and transport), and then acclimatized in laboratory for 2, 3 and 4 weeks. Groups of five oysters were sampled before and after the handling (T0 and T1, respectively), and after 2, 3 and 4 weeks acclimatization. During the acclimatization, water was renewed daily, food given twice a day and temperature and salinity maintained at 22 °C and 25 ppt, respectively. One group, in another tank, was kept in similar conditions and was exposed for 1 week to 0.1 % diesel after the 2-weeks acclimatization period. After exposure, gills were immediately frozen in liquid N 2 for biochemical analyses. Higher expression of heat-shock proteins (HSP70) was observed after handling, and after acclimatization periods of 3-week and 4-week, compared to the T0 group. The diesel exposed group did not show elevated levels of HSP70, when compared to the 3-week acclimatized group. The activity of glutathione S-transferase (GST) was unchanged after handling, but was lower after all acclimatization periods, compared to the T0 group. Exposure to diesel caused an increase in GST activity compared to the 3-week acclimatized group, but not compared to T0. The activity of catalase (CAT), acetylcholinesterase (AChE), and the MDA levels remained unchanged during the whole experiment. These results point to the need of a special care in laboratory and field experiments employing HSP70 and GST as biomarkers. (Supported by CNPq-CTPetro to ACDB.). © 2008 Published by Elsevier Ltd.
Resumo:
Fossil fuels such as diesel are being gradually replaced by biodiesel, a renewable energy source, cheaper and less polluting. However, little is known about the toxic effects of this new energy source on aquatic organisms. Thus, we evaluated biochemical biomarkers related to oxidative stress in Nile tilapia (Oreochromis niloticus) after two and seven exposure days to diesel and pure biodiesel (B100) and blends B5 and B20 at concentrations of 0.01 and 0.1mLL -1. The hepatic ethoxyresorufin-O-deethylase activity was highly induced in all groups, except for those animals exposed to B100. There was an increase in lipid peroxidation in liver and gills in the group exposed to the higher concentration of B5. All treatments caused a significant increase in the levels of 1-hydroxypyrene excreted in the bile after 2 and 7d, except for those fish exposed to B100. The hepatic glutathione-S-transferase increased after 7d in animals exposed to the higher concentration of diesel and in the gill of fish exposed to the higher concentration of pure diesel and B5, but decreased for the two tested concentrations of B100. Superoxide dismutase, catalase and glutathione peroxidase also presented significant changes according to the treatments for all groups, including B100. Biodiesel B20 in the conditions tested had fewer adverse effects than diesel and B5 for the Nile tilapia, and can be suggested as a less harmful fuel in substitution to diesel. However, even B100 could activate biochemical responses in fish, at the experimental conditions tested, indicating that this fuel can also represent a risk to the aquatic biota. © 2011 Elsevier Ltd.
Resumo:
The aim of this study was to investigate the effects of caffeine (20. mg/L) intake on cadmium (15. mg/L) accumulation in the rat blood, testes, epididymis and prostate as well as cadmium-induced changes to the antioxidant defense system of the epididymis. Caffeine reduced the cadmium concentration in all tissues analyzed. Meanwhile, cadmium reduced catalase activity and increased superoxide dismutase (SOD) activity in the epididymis. Caffeine increased SOD activity, catalase and glutathione tissue expression and sustains the cadmium's effect on catalase and GSP-Px activity. No differences in the expression of metallothionein and lipid peroxidation were observed among the different treatments in the epididymis. In conclusion, low doses of cadmium alter the antioxidant enzymatic profile of the epididymis, but not induced oxidative lipid damage. Caffeine intake reduces overall cadmium accumulation in the organism and enhances the levels of antioxidant protein expression in the epididymis, thus exerting a protective effect against this metal. © 2012 Elsevier Inc.
Resumo:
One of the main pesticides used in the cultivation of sugarcane in São Paulo State, Brazil, is Regent®800WG, the main active compound of which is fipronil. Fipronil is a potent insecticide that eliminates pests, including insects resistant to pyrethroids, organophosphates (OP) and carbamates (CA). There is little known on the toxic effects of fipronil on non-target organisms, such as tadpoles of frogs. It is possible that this compound carries a high toxicity for these organisms, since the pesticide can be incorporated into aquatic environments during the rainy season, a time which coincides with the time of amphibian reproduction and the occurrence of tadpoles in the aquatic environment in this region. Thus, the pesticide could be contributing to the decline of amphibians in the northwest region of São Paulo state due to its wide use. This study aimed to test the influence of Regent®800WG on some biochemical systems of tadpoles (such as antioxidant defense systems) at different stages of development. The results of analysis from in vivo exposures demonstrated that only a few parameters in the groups exposed to fipronil responded to exposure to Regent®800WG, results which indicate that the pesticide instigates biochemical responses in tadpoles. Although catalase and glucose-6-phosphate dehydrogenase (G6PDH) were unchanged during the experiments, glutathione-S-transferase (GST) was inhibited in tadpoles, and the activity of glutathione reductase (GR) varied according to the exposure period and pesticide concentration. This data demonstrated the influence of the fipronil formulation on the metabolism of tadpoles, and showed that it can increase their susceptibility to environmental contaminants. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Background: The literature has already demonstrated that cigarette influences the cardiovascular system. In this study, we performed a literature review in order to investigate the relationship between sidestream cigarette smoke (SSCS) and cardiac autonomic regulation. Methods. Searches were performed on Medline, SciELO, Lilacs and Cochrane databases using the crossing between the key-words: cigarette smoking, autonomic nervous system, air pollution and heart rate variability. Results: The selected studies indicated that SSCS exposure affects the sympathetic and parasympathetic responses to changes in arterial blood pressure. Moreover, heart rate responses to environmental tobacco smoke are increased in smokers compared to non-smokers. The mechanism involved on this process suggest increased oxidative stress in brainstem areas that regulate the cardiovascular system. Conclusion: Further studies are necessary to add new elements in the literature to improve new therapies to treat cardiovascular disorders in subjects exposed to sidestream cigarette smoke. © 2013 Valenti et al; licensee BioMed Central Ltd.
Resumo:
Scope. To elucidate the morphological and biochemical in vitro effects exerted by caffeine, taurine, and guarana, alone or in combination, since they are major components in energy drinks (EDs). Methods and Results. On human neuronal SH-SY5Y cells, caffeine (0.125-2 mg/mL), taurine (1-16 mg/mL), and guarana (3.125-50 mg/mL) showed concentration-dependent nonenzymatic antioxidant potential, decreased the basal levels of free radical generation, and reduced both superoxide dismutase (SOD) and catalase (CAT) activities, especially when combined together. However, guarana-treated cells developed signs of neurite degeneration in the form of swellings at various segments in a beaded or pearl chain-like appearance and fragmentation of such neurites at concentrations ranging from 12.5 to 50 mg/mL. Swellings, but not neuritic fragmentation, were detected when cells were treated with 0.5 mg/mL (or higher doses) of caffeine, concentrations that are present in EDs. Cells treated with guarana also showed qualitative signs of apoptosis, including membrane blebbing, cell shrinkage, and cleaved caspase-3 positivity. Flow cytometric analysis confirmed that cells treated with 12.5-50 mg/mL of guarana and its combinations with caffeine and/or taurine underwent apoptosis. Conclusion. Excessive removal of intracellular reactive oxygen species, to nonphysiological levels (or antioxidative stress), could be a cause of in vitro toxicity induced by these drugs. © 2013 Fares Zeidán-Chuliá et al.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Biodiesel fuel is gradually replacing petroleum-based diesel oil use. Despite the biodiesel being considered friendlier to the environment, little is known about its effects in aquatic organisms. In this work we evaluated whether biodiesel exposure can affect oxidative stress parameters and biotransformation enzymes in armored catfish (Pterygoplichthys anisitsi, Loricariidae), a South American endemic species. Thus, fish were exposed for 2 and 7d to 0.01mLL-1 and 0.1mLL-1 of pure diesel, pure biodiesel (B100) and blends of diesel with 5% (B5) and 20% (B20) biodiesel. Lipid peroxidation (malondialdehyde) levels and the activities of the enzymes glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were measured in liver and gills. Also, DNA damage (8-oxo-7, 8-dihydro-2'-deoxyguanosine) levels in gills and 7-ethoxyresorufin-O-deethylase activity in liver were assessed. Pure diesel, B5 and B20 blends changed most of the enzymes tested and in some cases, B5 and B20 induced a higher enzyme activity than pure diesel. Antioxidant system activation in P. anisitsi was effective to counteract reactive oxygen species effects, since DNA damage and lipid peroxidation levels were maintained at basal levels after all treatments. However, fish gills exposed to B20 and B100 presented increased lipid peroxidation. Despite biodiesel being more biodegradable fuel that emits less greenhouse gases, the increased lipid peroxidation showed that biofuel and its blends also represent hazards to aquatic biota. © 2013 Elsevier Ltd.
Resumo:
The increased production of urban sewage sludge requires alternative methods for final disposal. A very promising choice is the use of sewage sludge as a fertilizer in agriculture, since it is rich in organic matter, macro and micronutrients. However, urban sewage sludge may contain toxic substances that may cause deleterious effects on the biota, water and soil, and consequently on humans. There is a lack of studies evaluating how safe the consumption of food cultivated in soils containing urban sewage sludge is. Thus, the aim of this paper was to evaluate biochemical and redox parameters in rats fed with corn produced in a soil treated with urban sewage sludge for a long term. For these experiments, maize plants were grown in soil amended with sewage sludge (rates of 5, 10 and 20. t/ha) or not (control). Four different diets were prepared with the corn grains produced in the field experiment, and rats were fed with these diets for 1, 2, 4, 8 and 12 weeks. Biochemical parameters (glucose, total cholesterol and fractions, triglycerides, aspartate aminotransferase and alanine aminotransferase) as well the redox state biomarkers such as reduced glutathione (GSH), malondialdehyde (MDA), catalase, glutathione peroxidase and butyrylcholinesterase (BuChE) were assessed. Our results show no differences in the biomarkers over 1 or 2 weeks. However, at 4 weeks BuChE activity was inhibited in rats fed with corn grown in soil amended with sewage sludge (5, 10 and 20. t/ha), while MDA levels increased. Furthermore, prolonged exposure to corn cultivated in the highest amount per hectare of sewage sludge (8 and 12 weeks) was associated with an increase in MDA levels and a decrease in GSH levels, respectively. Our findings add new evidence of the risks of consuming food grown with urban sewage sludge. However, considering that the amount and type of toxic substances present in urban sewage sludge varies considerably among different sampling areas, further studies are needed to evaluate sludge samples collected from different sources and/or undergoing different types of treatment. © 2013 Elsevier Inc.