336 resultados para BIOCOMPATIBILITY
Resumo:
This study evaluated the histomorphologic response of human dental pulps capped with mineral trioxide aggregate (MTA) and Ca(OH)(2) cement (CH). Pulp exposures were performed on the occlusal floor of 40 human permanent premolars. After that, the pulp was capped either with CH or MTA and restored with composite resin. After 30 and 60 days, teeth were extracted and processed for histologic exam and categorized in a histologic score system. The data were subjected to Kruskal-Wallis and Conover tests (alpha = .05). All groups performed well in terms of hard tissue bridge formation, inflammatory response, and other pulpal findings. However, a lower response of CH30 was observed for the dentin bridge formation, when compared with MTA30 and MTA60 groups. Although the pulp healing with calcium hydroxide was slower than that of MTA, both materials were successful for pulp capping in human teeth.
Resumo:
The purpose of this study was to evaluate the subcutaneous response of rat connective tissue to light-cure MTA and Angelus MTA. These materials were placed in polyethylene and dentin tubes and implanted into dorsal connective tissue of Wistar rats for 30 and 60 days. The specimens were prepared to be stained with hematoxylin-eosin, Von Kossa, and without stain for polarized light and evaluated in an optic microscope. The Angelus MTA showed a mild inflammatory response at 30 days and none at 60 days, characterized by organized connective tissue, presence of some chronic inflammatory cells, and induction of mineralized tissue formation. Light-cure MTA presented a moderate chronic inflammatory response at 30 days that decreased at 60 days but was more intense than with Angelus MTA and without dystrophic calcifications. It was possible to conclude that light-cure MTA was similar to MTA at 60 days, but it did not stimulate mineralization.
Resumo:
The aim of this study was to evaluate the rat subcutaneous tissue response to implanted polyethylene tubes filled with Endo-CPM-Sealer (Portland Cement Modified Sealer) (EGEO S.R.L., Buenos Aires, Argentina) compared with Sealapex (SybronEndo, Glendora, CA) and Angelus MTA (Angelus, Londrina, Brazil). These materials were placed in polyethylene and dentin tubes and implanted into dorsal connective tissue of Wistar rats for 7, 15, 30, 60, and 90 days. The specimens were prepared to be stained with hematoxylin and eosin or Von Kossa or not stained for polarized light. Qualitative and quantitative evaluations of the reaction were performed. Both materials caused mild to moderate reactions at 7 days that decreased with time. The response was similar to the control on the 30th day with Endo-CPM-Sealer and Angelus MTA and on the 60th day with Sealapex. Mineralization and granulations birefringent to the polarized light were observed with all materials. it was possible to conclude that Endo-CPM-Sealer was biocompatible and stimulated mineralization. (J Endod 2009;35:256-260)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. To evaluate the response of the pulpo-dentin complex following application of a resin-modified glass-ionomer cement or an adhesive system in deep cavities performed in human teeth.Methods. Deep class V cavities were prepared on the buccal surface of 26 premolars. In Group I the cavity walls (dentin) and enamel were conditioned with 32% phosphoric acid and the dentin adhesive system One Step (Bisco, Inc., Itasca, IL, USA) was applied. In Groups 2 and 3, before total etching and application of bonding agent, the cavity floor was lined with the resin-modified glass-ionomer cement-Vitrebond (3M ESPE Dental Products Division, St. Paul, MN, USA) or the calcium hydroxide cement-Dycal (control group, Dentsply, Mildford, DE, USA), respectively. The cavities were restored using light-cured Z-100 composite resin (3M ESPE). The teeth were extracted between 5 and 30 days and prepared for microscopic assessment. Serial sections were stained with H/E, Masson's trichrome, and Brown and Brenn techniques.Results. In Group 1, the inflammatory response was more evident than in Groups 2 and 3. Diffusion of dental material components across dentinal tubules was observed only in Group 1, in which the intensity of the pulp response increased as the remaining dentin thickness decreased. Bacteria were evidenced in the lateral walls of two samples (Group 2) which exhibited no inflammatory response or tissue disorganization.Conclusions. Based on the experimental conditions, it was concluded total acid etching followed by application of One Step bonding agent cannot be recommended as adequate procedures. In this clinical condition the cavity walls should be lined with a biocompatible dental material, such as Vitrebond or Dycal. 2003 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To evaluate the pulpo-dentin complex response to a dentin adhesive application in deep cavities performed in human teeth.Methods: Deep class V cavities were prepared on the buccal surface of 46 premolars. The remaining dentin of the axial wall received 10% phosphoric acid and dentin adhesive (group DA), or was protected before the acid and dentin adhesive application with calcium hydroxide cement (group CH). Half of the teeth, which received the acid application directly over the axial wall, were contaminated prior to the procedures with dental plaque collected from the patient's own teeth (group DAC). The plaque was placed on the dentin for 5 min and then the cavity was washed. All teeth were restored with a light-cured composite resin. The teeth were extracted after 7, 30 or 60 days and prepared according to normal histologic techniques. Serial sections were stained with WE, Masson's trichrome and Brown & Brenn technique for demonstration of bacteria.Results: the histopathologic evaluation showed that in groups DA and DAC, the inflammatory response was more evident than in group CH. Also, the intensity of the pulp reaction increased as the remaining dentin thickness decreased. There was no statistical difference in the inflammatory response between the groups DA and DAC.Conclusion: Based on the experimental conditions, we concluded that the All Bond 2 adhesive system, when applied on dentin in deep cavities, showed an acceptable biocompatibility. However, the intensity of the pulpo-dentin complex response depends on the remaining dentin thickness. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Major problems with the treatment of osteomyelitis are associated with poor antibiotic distribution at the site of infection due to limited blood circulation to the skeletal tissue. Improved treatment procedures have been used in drug delivery systems that include bioceramics and natural and synthetic polymers. This work reports the development of anionic collagen:hydroxyapatite composite paste for sustained antibiotic release. Antibiotic release by the composite was characterized by two steps. In the first, 15.0 +/- 4.9% was released in the first 5 h (n = 53) by a normal Fick diffusion mechanism. In the second step, only 16.8 +/- 2.2% was released after 7 days. In conclusion, hydroxyapatite:anionic collagen composite can be an efficient support for sustained antibiotic release in the treatment of osteomyelitis because most of the antibiotic release may be associated with composite bioresorption, thus permitting antibiotic release throughout the healing process. Hydroxyapatite:anionic collagen paste showed good biocompatibility associated with bone tissue growth with material still being observed after 60 days from the time of implants.
Resumo:
Purpose: the purpose of the present study was to evaluate the histologic results of bone cavities that were surgically created in the mandibles of Cebus apella monkeys and filled with autogenous bone, PerioGlas, FillerBone, or Bone Source. Materials and Methods: Surgical cavities 5 mm in diameter were prepared through both mandibular cortices in the mandibular angle region. The cavities were randomly filled, and the animals were divided into groups according to the material employed: Group 1 cavities were filled with autogenous corticocancellous bone; group 2 cavities were filled with calcium phosphate cement (BoneSource); and group 3 and group 4 cavities were filled with bioactive glass (FillerBone and PerioGlas, respectively). After 180 days the animals were sacrificed, and specimens were prepared following routine laboratory procedures for hematoxylin/eosin staining and histologic evaluation. Results: the histologic analysis showed that autogenous bone allowed total repair of the bone defects; bioactive glasses (FillerBone and PerioGlas) allowed total repair of the defects with intimate contact of the remaining granules and newly formed bone; and the cavities filled with calcium phosphate cement (BoneSource) were generally filled by connective fibrous tissue, and the material was almost totally resorbed. Discussion: the autogenous bone, FillerBone, and PerioGlas provided results similar to those in the current literature, showing that autogenous bone is the best Choice for filling critical-size defects. Synthetic implanted materials demonstrated biocompatibility, but the bioglasses demonstrated osteoconductive activity that did not occur with calcium phosphate (BoneSource). Conclusion: According to the methodology used in this study, it can be concluded that the utilization of autogenous bone and bioactive glasses permitted the repair of surgically created critical-size defects by newly formed bone; the synthetic implanted materials demonstrated biocompatibility, and the bioactive glasses demonstrated osteoconductive activity. The PerioGlas was mostly resorbed and replaced by bone and the remaining granules were in close contact with bone; the FillerBone showed many granules in contact with the newly formed bone; BoneSource did not permit repair of the critical-size defects, and the defects were generally filled by connective fibrous tissue.
Resumo:
The tissue response to polyanionic collagen matrices, prepared from bovine pericardium and implanted subperiosteally in rat calvaria, was studied. The materials were implanted in 72 male rats (Rattus norvegicus, albinus, Holtzman), randomly divided into four groups: GI-MBP hydrolyzed for 24 h; GII-MBP hydrolyzed for 36 h; GIII-MBP hydrolyzed for 48 h; GIV-native M BP. The materials were explanted after 15, 30 and 60 days and analyzed by routine histological procedures. Except for group IV (native bovine pericardium), polyanionic collagen from groups GI, GII and GIII showed low inflammatory reaction associated with bone formation, partially or completely integrated to the cranial bone; group GIV was characterized by an intense inflammatory reaction with occasional dystrophic mineralization and with occasional bone formation at 60 days when there was a decrease in the inflammatory reaction. Thus, the MBP from groups I, II and III were biologically compatible, enhancing bone formation with a slight delay at 60 days in GII. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Background: the failure of osseointegration in oral rehabilitation has gained importance in current literature and in clinical practice. The integration of titanium dental implants in alveolar bone has been partly ascribed to the biocompatibility of the implant surface oxide layer. The aim of this investigation was to analyze the surface topography and composition of failed titanium dental implants in order to determine possible causes of failure.Methods: Twenty-one commercially pure titanium (cpTi) implants were retrieved from 16 patients (mean age of 50.33 +/- 11.81 years). Fourteen implants were retrieved before loading (early failures), six after loading (late failures), and one because of mandibular canal damage. The failure criterion was lack of osseointegration characterized as dental implant mobility. Two unused implants were used as a control group. All implant surfaces were examined by scanning electron microscopy (SEM) and energy-dispersive spectrometer x-ray (EDS) to element analysis. Evaluations were performed on several locations of the same implant.Results: SEM showed that the surface of all retrieved implants consisted of different degrees of organic residues, appearing mainly as dark stains. The surface topography presented as grooves and ridges along the machined surface similar to control group. Overall, foreign elements such as carbon, oxygen, sodium, calcium, silicon, and aluminum were detected in failed implants. The implants from control group presented no macroscopic contamination and clear signs of titanium.Conclusion: These preliminary results do not suggest any material-related cause for implant failures, although different element composition was assessed between failed implants and control implants.
Resumo:
The aim of this study was to evaluate the osteogenic behavior of two chemically similar bioactive glass products (Biogran (R) and Perioglas (R)) implanted in critical bone defects in rat calvaria. Thirty-six transfixed bone defects of 8 mm diameter were made surgically in adult male Wistar rats. The animals were distributed equally into three groups: Biogran (GI), Perioglas (GII) and without implant material (control; GIII). The morphology and composition of both bioactive glasses were analyzed by scanning electron microscopy and energy-dispersive spectrometry. Tissue specimens were analyzed at the biological time points of 15, 30 and 60 days by optical microscopy and morphometry, demonstrating biocompatibility for the tested materials with moderate chronic inflammation involving their particles. Bone neoformation resulted only as a reparative reaction to an intentionally produced defect and was limited to the defect's edges. No statistically significant differences among the groups were observed. At the scar interstice, abundant deposits of collagenous fibers enveloping the particles were noted. The present results indicated that the bioactive glasses, under the experimental conditions analyzed, did not show osteogenic behavior. Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
Innocuous biocompatible materials have been searched to repair or reconstruct bone defects. Their goal is to restore the function of live or dead tissues. This study compared connective tissue and bone reaction when exposed to demineralized bovine bone matrix and a polyurethane resin derived from castor bean (Ricinus communis). Forty-five rats were assigned to 3 groups of 15 animals (control, bovine bone and polyurethane). A cylindrical defect was created on mandible base and filled with bovine bone matrix and the polyurethane. Control group received no treatment. Analyses were performed after 15, 45 and 60 days (5 animals each). Histological analysis revealed connective tissue tolerance to bovine bone with local inflammatory response similar to that of the control group. After 15 days, all groups demonstrated similar outcomes, with mild inflammatory reaction, probably due to the surgical procedure rather than to the material. In the polymer group, after 60 days, scarce multinucleated cells could still be observed. In general, all groups showed good stability and osteogenic connective tissue with blood vessels into the surgical area. The results suggest biocompatibility of both materials, seen by their integration into rat mandible. Moreover, the polyurethane seems to be an alternative in bone reconstruction and it is an inexhaustible source of biomaterial.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)