201 resultados para Atmospheric ions
Resumo:
An analytical method for the determination of aldicarb, and its two major metabolites, aldicarb sulfoxide and aldicarb sulfone in fruits and vegetables is described. Briefly the method consisted of the use of a methanolic extraction, liquid-liquid extraction followed by solid-phase extraction clean-up. Afterwards, the final extract is analyzed by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS). The specific fragment ion corresponding to [M-74](+) and the protonated molecular [M+K](+) ion were used for the unequivocal determination of aldicarb and its two major metabolites. The analytical performance of the proposed method and the results achieved were compared with those obtained using the common analytical method involving LC with post-column fluorescence detection (FL). The limits of detection varied between 0.2 and 1.3 ng but under LC-FL were slightly lower than when using LC-APCI-MS. However both methods permitted one to achieve the desired sensitivity for analyzing aldicarb and its metabolites in vegetables. The method developed in this work was applied to the trace determination of aldicarb and its metabolites in crop and orange extracts. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
A sensitive and affordable approach is described for the in-situ measurement of ambient formaldehyde. Air is sampled around a 100 microliter aqueous drop containing 3-methyl-2-benzothiazoline hydrazone. After a desired period of sampling (typ. 5 min) and a waiting period of 10 min for the reaction to be completed, a second reagent (FeCl3) is added to the drop by means of a conjoined conduit. A blue product is formed and is read after an additional 10 min of reaction by a fiber-optic/light emitting diode based photodetector. A fresh drop is then formed and the process begins anew. As demonstrated here, the limit of detection is similar to 6.25 mu g m(-3) HCHO but can be significantly improved by using longer sampling times and a sampling rate higher than 100 mi min(-1) used in most of this work. This is the first example of a chromogenic drop sensor that utilizes sequential reagent addition.
Resumo:
Seasonal variability in the major soluble ion composition of atmospheric particulate matter in the principal sugar cane growing region of central São Paulo State indicates that pre-harvest burning of sugar cane plants is an important influence on the regional scale aerosol chemistry. Samples of particulate matter were collected between April 1999 and February 2001 in coarse (> 3.5 mum) and fine (< 3.5 mum) fractions, and analysed for HCOO-, CH3COO-, C2C42-, SO42- . Results indicated that the principal sources of the aerosols investigated NO3-, Cl-, Na+, K+, NH4+, Mg2+ and Ca2+ were local or regional in nature (scale of tens to a few hundreds of km), and that differences between air masses of varying origins were small. Fine particles were typically acidic, containing secondary nitrates, sulphates and organic species. Coarse fraction concentrations were mainly influenced by physical parameters (wind speed, movement of vehicles and surface condition) affecting rates of re-suspension, although secondary nitrate and sulphate were also present in the larger particles.Concentrations of all measured species except sodium and chloride were higher during the burning season. Although concentrations were lower than often found in polluted urban environments, the massive increases during much of the year, due to a single anthropogenic activity (sugar cane burning) are indicative of a very large perturbation of the lower troposphere in the region relative to the natural condition. These aerosols are suspected of promoting respiratory disease. They also represent an important mechanism for the tropospheric transport of species relevant to surface acidification (sulphates, nitrates, ammonium and organic acids) and soil nutrient status (potassium, nitrogen, ammonium, calcium), so their impact on fragile natural ecosystems (following deposition) needs to be considered. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Snake venom PLA(2)s have been extensively studied due to their role in mediating and disrupting physiological processes such as coagulation, platelet aggregation and myotoxicity. The Ca2+ ion bound to the putative calcium-binding loop is essential for hydrolytic activity. We report the crystallization in the presence and absence of Ca2+ and X-ray diffraction data collection at 1.60 Angstrom (with Ca2+) and 1.36 Angstrom (without Ca2+) of an Asp49 PLA(2) from Bothrops jararacussu venom. The crystals belong to orthorhombic space group C222(1). Initial refinement and electron density analysis indicate significant conformational. changes upon Ca2+ binding. (C) 2004 Elsevier B.V. All fights reserved.
Resumo:
A simultaneous method for the trace determination of acidic, neutral herbicides and their transformation products in estuarine waters has been developed through an on-line solid-phase extraction method followed by liquid chromatography with diode array and mass spectrometric detection. An atmospheric pressure chemical ionization (APCI) interface was used in the negative ionization mode after optimization of the main APCI parameters. Limits of detection ranged from 0.1 to 0.02 ng/ml for 50 mi of acidified estuarine waters preconcentrated into polymeric precolumns and using time-scheduled selected ion monitoring mode. Two degradation products of the acidic herbicides (4-chloro-2-methylphenol and 2,4-dichlorophenol) did not show good signal response using APCI-MS at the concentration studied due to the higher fragmentor voltage needed for their determination For molinate and the major degradation product of propanil, 3,4-dichloroaniline, positive ion mode was needed for APCI-MS detection. The proposed method was applied to the determination of herbicides in drainage waters from rice fields of the Delta del Ebro (Spain). During the S-month monitoring of the herbicides, 8-hydroxybentazone and 4-chloro-2-methylphenoxyacetic acid were successively found in those samples. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Two patterns of solubilization of metal ions resulting from bioleaching of sewage sludge by sulphur-oxidizing Thiobacillus spp. were established as a function of pH. Chromium and copper ions required a pH of 2-3 to initiate their solubilization, whereas nickel and zinc ions had their solubilization initiated at pH 6-6.5. The patterns obtained were independent of the sludge solids concentrations investigated (10, 17, 25, 32.5 and 40 g l(-1)).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Thermal investigation of solid 2-methoxycinnamylidenepyruvate of some bivalent transition metal ions
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, a SiO2 spherical were prepared by the Stober Method and then recovered with a single layer of Eu2O3 oxide (SiO2@Eu2O3) obtained by the Polymeric Precursor Method. The SiO2@Eu2O3 powder was heated treated at 100, 300, 400, 500 and 800 A degrees C. The samples were characterized by the Scanning Electonic Microscopy (SEM), Thermal Analysis (TGA/DTA), and the luminescent properties of the SiO2@Eu2O3 powders were studied by their emission and excitation spectra as well as by the lifetime measurements of the Eu3+ D-5(0) -> aEuro parts per thousand F-7(2) transition. The SEM analysis shows that the silica prepared by the Stober Method is spherical with a particle size of 460 nm. The emission spectra of the SiO2@Eu2O3 powders presented the Eu3+ characteristics bands related to the D-5(0) -> aEuro parts per thousand F-7(J) (J = 0, 1, 2, 3, 4) transitions at 577, 591, 616, 649 and 695 nm, respectively. The band related to the D-5(0) -> aEuro parts per thousand F-7(2) transition is the most intense in the spectra, and its intensity decreases with the temperature enhancement. The decay curves of the SiO2@Eu2O3 samples presented monoexponential features, and the obtained lifetime values were higher than the Eu2O3 oxide. It was possible to conclude that the D-5(0) -> aEuro parts per thousand F-7(2) hypersensitive transition is strongly dependent on the Eu3+ surrounding.
Resumo:
This paper evaluates emissions to the atmosphere of biologically available nitrogen compounds in a region characterized by intensive sugar cane biofuel ethanol production. Large emissions of NH(3) and NO,, as well as particulate nitrate and ammonium, occur at the harvest when the crop is burned, with the amount of nitrogen released equivalent to similar to 35% of annual fertilizer-N application. Nitrogen oxides concentrations show a positive association with fire frequency, indicating that biomass burning is a major emission source, with mean concentrations of NO, doubling in the dry season relative to the wet season. During the dry season biomass burning is a source of NH3, with other sources (wastes, soil, biogenic) predominant during the wet season. Estimated NO(2)-N, NH(3)-N, NO(3)(-)-N and NH(4)(+)-N emission fluxes from sugar cane burning in a planted area,of ca. 2.2 x 10(6) ha are 11.0, 1.1, 0.2, and 1.2 Gg N yr(-1), respectively.
Resumo:
Synthesis, characterization, and thermal behavior of transition metal oxamates, M(NH(2)C(2)O(3))(2)center dot nH(2)O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behavior of oxamic acid and its sodium salt (NaNH(2)C(2)O(3)) were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis and complexometry. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, as well as of the gaseous products evolved during the thermal decomposition of these compounds in dynamic air and N(2) atmospheres.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)