199 resultados para ALTERNATIVE NAD(P)H DEHYDROGENASE
Resumo:
New parameterization schemes have been proposed by the authors in Part I of this paper. In this part these new options for the parameterization of power flow equations are tested, namely, the total power losses (real and reactive), the power at the slack bus (real or reactive), the reactive power at generation buses, and the transmission line power losses (real and reactive). These different parameterization schemes can be used to obtain the maximum loading point without ill-conditioning problems, once the singularity of Jacobian matrix is avoided. The results obtained with the new approach for the IEEE test systems (14, 30, 57, and 118 buses) show that the characteristics of the conventional method are not only preserved but also improved. In addition, it is shown that the proposed method and the conventional one can be switched during the tracing of PV curves to determine, with few iterations, all points of the PV curve. Several tests were also carried out to compare the performance of the proposed parameterization schemes for the continuation power flow method with the use of both the secant and tangent predictors.
Resumo:
Shikimate dehydrogenase (SDH, EC 1.1.1.25) extracted from cucumber pulp (Cucumis sativus L.) was purified 7-fold by precipitation with ammonium sulfate and elution from columns of Sephadex G-25, DEAE-cellulose, and hydroxyapatite. Two activity bands were detected on polyacrylamide gel electrophoresis at the last purification step. pH optimum was 8.7, and molecular weight of 45 000 was estimated on a Sephadex G-100 column. SDH was inhibited competitively by protocatechuic acid with a K(i) value of 2 x 10-4 M. K(m) values of 6 x 10-5 and 1 x 10-5 M were determined for shikimic acid and NADP+, respectively. The enzyme was completely inhibited by HgCl2 and p-(chloromercuri)benzoate (PCMB). NaCl and KCl showed partial protection against inhibition by PCMB. Heat inactivation between 50 and 55-degrees-C was biphasic, and the enzyme was completely inactivated after 10 min at 60-degrees-C. Incubation of SDH with either NADP+ or shikimic acid protected the enzyme against heat inactivation.
Resumo:
A modified spectrophotometric method for serum glutamic-oxaloacetic transaminase (SGOT) assay was developed. A crude cell-free extract from Streptomyces aureofaciens which showed a high level of malate dehydrogenase (MDH) activity (E.C. 1.1.1.37) was used as the enzymatic indicator. The lyophilized microbial preparation was used without previous purification and was quite stable under refrigeration for one year. Serum sample assays using both the method utilizing the crude cell extract and an enzymatic commercial kit showed good correlation.
Resumo:
Statement of problem. The success of metal-ceramic restorations is influenced by the compatibility between base metal alloys and porcelains. Although porcelain manufacturers recommend their own metal systems as the most compatible for fabricating metal-ceramic prostheses, a number of alloys have been used.Purpose. This study evaluated the shear bond strength between a porcelain system and 4 alternative alloys.Material and methods. Two Ni-Cr alloys: 4 ALL and Wiron 99, and 2 Co-Cr alloys: IPS d.SIGN 20 and Argeloy NP were selected for this study. The porcelain (IPS d.Sign porcelain system) portion of the cylindrical inetal-ceramic specimens was 4 mm thick and 4 mm high; the metal portion was machined to 4 x 4 mm, with a base that was 5 nun thick and 1 mm high. Forty-four specimens were prepared (n=11). Ten specimens from each group were subjected to a shear load oil a universal testing machine using a 1 min/min crosshead speed. One specimen from each group was observed with a scanning electron microscope. Stress at failure (MPa) was determined. The data were analyzed with a 1-way analysis of variance (alpha=.05).Results. The groups, all including IPS d.Sign porcelain, presented the following mean bond strengths (+/-SD) in MPa: 4 ALL, 54.0 +/- 20.0; Wiron, 63.0 +/- 13.5; IPS d.SIGN 20, 71.7 +/- 19.2; Argeloy NP, 55.2 +/- 13.5. No significant differences were found among the shear bond strength values for the metal-ceramic specimens tested.Conclusion. None of the base metal alloys studied demonstrated superior bond strength to the porcelain tested.
Resumo:
1. Adrenal ectopic tissue has been detected in the paragonadal region of normal women. In patients with congenital adrenal hyperplasia due to 21-hydroxylase (21-OH) deficiency, the manifestation of hyperplasia of paragonadal accessory adrenal tissue has been usually reported to occur in males. Probably, this is the first report of a female with 3beta-hydroxysteroid dehydrogenase (3beta-HSD) deficiency with ectopic adrenal tissue in ovaries. However, the occurrence of hyperplasia of adrenal rests among women with classical congenital adrenal hyperplasia may not be rare, especially among patients with a late diagnosis.2. We report a woman with 3beta-HSD deficiency whose definitive diagnosis was made late at 41 years of age immediately before surgery for the removal of a uterine myoma. During surgery, exploration of the abdominal cavity revealed the presence of bilateral accessory adrenal tissue in the ovaries and in the para-aortic region. The patient had extremely high levels of ACTH (137 pmol/l), DHEA (901.0 nmol/l), DHEA-S (55.9 mumol/l), androstenedione (70.2 nmol/l), testosterone (23.0 nmol/l) and 17alpha-hydroxypregnenolone (234.4 nmol/l) suggesting 3beta-HSD deficiency.3. In view of these elevated androgen levels, with an absolute predominance of DHEA and DHEA-S, we evaluated the effect of this hormonal profile on carbohydrate tolerance and insulin response to glucose ingestion.4. The patient presented normal glucose tolerance but her insulin response was lower than that of 14 normal women (area under the curve, 3beta-HSD = 17,680 vs 50,034 pmol/l for the control group over a period of 3 h after glucose ingestion).5. These results support recent data suggesting that patients with increased serum DHEA and DHEA-S levels do not present resistance to insulin.
Resumo:
The resumption of tuberculosis led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. Isoniazid (INH), the most prescribed drug to treat TB, inhibits an NADH-dependent enoyl-acyl carrier protein reductase (InhA) that provides precursors of mycolic acids, which are components of the mycobacterial cell wall. InhA is the major target of the mode of action of isoniazid. INH is a pro-drug that needs activation to form the inhibitory INH-NAD adduct. Missense mutations in the inhA structural gene have been identified in clinical isolates of Mycobacterium tuberculosis resistant to INH. To understand the mechanism of resistance to INH, we have solved the structure of two InhA mutants (121V and S94A), identified in INH-resistant clinical isolates, and compare them to INH-sensitive WT InhA structure in complex with the INH-NAD adduct. We also solved the structure of unliganded INH-resistant S94A protein, which is the first report on apo form of InhA. The salient features of these structures are discussed and should provide structural information to improve our understanding of the mechanism of action of, and resistance to, INH in M. tuberculosis. The unliganded structure of InhA allows identification of conformational changes upon ligand binding and should help structure-based drug design of more potent antimycobacterial agents. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Flotation has been widely used in studies of recent foraminifera in order to concentrate tests and save time during picking. In this paper, four flotation agents with different densities were compared: (1) trichloroethylene, TCE (C2HCl3), with a density of 1.46 g mL(-1); (2) sodium nitrate/sodium thiosulfate solution, SNT (NaNO3 + Na2O3S2 center dot 5H(2)O), with a density of 1.46 g mL(-1); (3) zinc chloride Solution, ZC (ZHCl(2)), with a density of 1.70 g mL(-1); and (4) sodium polytungstate solution, SPT (3Na(2)WO(4) center dot 9WO(3) center dot 5H(2)O), with a density of 2.50 g mL(-1). Comparison was carried out by means of qualitative and quantitative data. Results showed that ZC and SPT were the best flotation agents, recovering 91% and 96% of the total tests, respectively, whereas TCE and SNT recovered 59.1% and 72.8%, respectively. Both quantitative and qualitative results significantly improved with a higher density of the flotation liquid. Therefore, substitution of TCE with ZC or SPT solutions is strongly encouraged, because they are, additionally, less harmful to health and the environment. ZC is the most cost-effective, since its results were not significantly different from those of the SPT treatment. Carbon tetrachloride (CCl4) was not considered in this comparative study, because it has been banned in many countries and it is highly harmful to health and the environment.
Resumo:
The pathogenic fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis, a pulmonary mycosis acquired by inhalation of fungal airborne propagules, which may disseminate to several organs and tissues, leading to a severe form of the disease. Adhesion to and invasion of host cells are essential steps involved in the infection and dissemination of pathogens. Furthermore, pathogens use their surface molecules to bind to host extracellular matrix components to establish infection. Here, we report the characterization of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of P. brasiliensis as an adhesin, which can be related to fungus adhesion and invasion. The P. brasiliensis GAPDH was overexpressed in Escherichia coli, and polyclonal antibody against this protein was obtained. By immunoelectron microscopy and Western blot analysis, GAPDH was detected in the cytoplasm and the cell wall of the yeast phase of P. brasiliensis. The recombinant GAPDH was found to bind to fibronectin, laminin, and type I collagen in ligand far-Western blot assays. of special note, the treatment of P. brasiliensis yeast cells with anti-GAPDH polyclonal antibody and the incubation of pneumocytes with the recombinant protein promoted inhibition of adherence and internalization of P. brasiliensis to those in vitro-cultured cells. These observations indicate that the cell wall-associated form of the GAPDH in P. brasiliensis could be involved in mediating binding of fungal cells to fibronectin, type I collagen, and laminin, thus contributing to the adhesion of the microorganism to host tissues and to the dissemination of infection.
Resumo:
The multilayer perceptron network has become one of the most used in the solution of a wide variety of problems. The training process is based on the supervised method where the inputs are presented to the neural network and the output is compared with a desired value. However, the algorithm presents convergence problems when the desired output of the network has small slope in the discrete time samples or the output is a quasi-constant value. The proposal of this paper is presenting an alternative approach to solve this convergence problem with a pre-conditioning method of the desired output data set before the training process and a post-conditioning when the generalization results are obtained. Simulations results are presented in order to validate the proposed approach.
Resumo:
Alcohol dehydrogenases (ADHs) are oxidoreductases present in animal tissues, plants, and microorganisms. These enzymes attract major scientific interest for the evolutionary perspectives, afforded by their wide occurrence in nature, and for their use in synthesis, thanks to their broad substrate specificity and stereoselectivity. In the present study, the standardization of the activity of the alcohol dehydrogenase from baker's yeast was accomplished, and the pH and temperature stability showed, that the enzyme presented a high stability to pH 6.0-7.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The assays of ethanol (detection range 1-5 mM or 4.6 x 10(-2) to 23.0 x 10(-2) g/L) in different samples in alcoholic beverages, presented a maximum deviation of only 7.2%. The standard curve and the analytic curve of this method meet the conditions of precision, sensitivity, simplicity, and low cost, required for a useable analytical method. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Alternative sampling procedures are compared to the pure random search method. It is shown that the efficiency of the algorithm can be improved with respect to the expected number of steps to reach an epsilon-neighborhood of the optimal point.
Resumo:
The use of transposable elements (TEs) as genetic drive mechanisms was explored using Drosophila melanogaster as a model system. Alternative strategies, employing autonomous and nonautonomous P element constructs were compared for their efficiency in driving the ry(+) allele into populations homozygous for a ry(-) allele at the genomic rosy locus. Transformed flies were introduced at 1%, 5%, and 10% starting frequencies to establish a series of populations that were monitored over the course of 40 generations, using both phenotypic and molecular assays. The transposon-borne ry(+) marker allele spread rapidly in almost all populations when introduced at 5% and 10% seed frequencies, but 1% introductions frequently failed to become established. A similar initial rapid increase in frequency of the ry(+) transposon occurred in several control populations lacking a source of transposase. Constructs carrying ry(+) markers also increased to moderate frequencies in the absence of selection on the marker. The results of Southern and in situ hybridization studies indicated a strong inverse relationship between the degree of conservation of construct integrity and transposition frequency. These finding have relevance to possible future applications of transposons as genetic drive mechanisms.