95 resultados para AL alloys
Resumo:
The aim of this study is to characterize the macrostructure and microstructure of Al - 1%Si alloy obtained in sand and metallic molds. Aluminium has good mechanical properties, but adding silicon, even in small quantities, can change the microstructure and improves mechanical behavior. Workpieces were castings in metallic and sand molds and one can see a difference in their cooling curve, macroscopic and microscopic structures. The sand mold casting has lower cooling rate and so its grains are larger. Due to the lower concentration of grain boundary, the hardness is lower compared to that found in metallic molds, which has smaller grains and a higher hardness. Therefore, it can be concluded that the cooling rate and alloying elements affect the final microstructure of the workpiece
Resumo:
AIM: To evaluate the adherence of Streptococcus mutans to the surface of the amalgam and copper/aluminum alloy samples and also evaluate the release of metallic ions. METHODS: The prepared medium was changed every 72 h and analyzed by atomic absorption spectrophotometer. Samples were removed from the prepared medium at 15, 30, 48 and 60 days. RESULTS: The result shows that ions released were statistically different among all groups, and so were both biofilm and pits formation and the corrosion induced by the S. mutans in both types of samples. SEM observation of the samples immersed in the prepared medium with S. mutans showed adherence of microorganisms on the whole surface, in all groups. CONCLUSIONS: The S. mutans adhere to both amalgam and copper/aluminum alloy causing corrosion of those restorations. S. mutans produced a greater ions release in Cu/Al alloy; in amalgam, the ions release was not influenced by exposure to S. mutans.
Resumo:
Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.
Resumo:
The electrochemical behaviour of Cu, Cu-Al and Cu-Al-Ag alloys in aqueous solutions of NaCl (0.5 M, pH = 3.00) was studied by means of voltammetric methods and electrochemical impedance spectroscopy. The surfaces were examined by SEM and EDX analysis. Cu-Al-Ag alloy shows a potentiodynamic behaviour similar to that of the pure copper electrode while the Cu-Al alloy presents some minor differences. In the active dissolution region the electrodes suffer pitting corrosion and in the other potential regions there are the formation of a passivant film with composition depending on the potential. The impedance responses of the electrodes are discussed. An electrodissolution mechanism is proposed and the effect of the alloying elements upon the impedance response and polarisation curves is explained. The main effects are due to the production of copper and silver chlorides and aluminium oxides/ hydroxides at the corroding interface. The addition of Al or (Al + Ag) increases the corrosion resistance of pure copper. © 1995.
Resumo:
The Inoue procedure is used to study the influence of Cr and Cu elements, jointly or individually, on the matrix decomposition of quenched Al-Zn-Mg alloys. The addition of copper and copper with chromium does not significantly change the limits of the temperatures of formation of Guinier-Preston zone and the range of the matrix decomposition. The control of the vacancy concentration in the alloys by different heat treatments and the addition of certain elements such as copper and chromium seems to play an important role in the nucleation rate and the kinetics of phase transformations.