127 resultados para 1094


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate how special relativity influences the transmission of classical information through quantum channels by evaluating the Holevo bound when the sender and the receiver are in (relativistic) relative motion. By using the spin degrees of freedom of spin-1/2 fermions to encode the classical information, we show that, for some configurations, the accessible information in the receiver can be increased when the spin detector moves fast enough. This is possible by allowing the momentum wave packet of one of the particles to be sufficiently wide while the momentum wave packets of other particles are kept relatively narrow. In this way, one can take advantage of the fact that boosts entangle the spin and momentum degrees of freedom of spin-1/2 fermions to increase the accessible information in the former. We close the paper with a discussion of how this relativistic quantum channel cannot in general be described by completely positive quantum maps. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We solve the three-body bound-state problem in three dimensions for mass imbalanced systems of two identical bosons and a third particle in the universal limit where the interactions are assumed to be of zero range. The system displays the Efimov effect and we use the momentum-space wave equation to derive formulas for the scaling factor of the Efimov spectrum for any mass ratio assuming either that two or three of the two-body subsystems have a bound state at zero energy. We consider the single-particle momentum distribution analytically and numerically and analyze the tail of the momentum distribution to obtain the three-body contact parameter. Our findings demonstrate that the functional form of the three-body contact term depends on the mass ratio, and we obtain an analytic expression for this behavior. To exemplify our results, we consider mixtures of lithium with either two caesium or rubidium atoms which are systems of current experimental interest. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a model for the condensate of dipolar atoms or molecules, in which the dipole-dipole interaction (DDI) is periodically modulated in space due to a periodic change of the local orientation of the permanent dipoles, imposed by the corresponding structure of an external field (the necessary field can be created, in particular, by means of magnetic lattices, which are available to the experiment). The system represents a realization of a nonlocal nonlinear lattice, which has a potential to support various spatial modes. By means of numerical methods and variational approximation (VA), we construct bright one-dimensional solitons in this system and study their stability. In most cases, the VA provides good accuracy and correctly predicts the stability by means of the Vakhitov-Kolokolov criterion. It is found that the periodic modulation may destroy some solitons, which exist in the usual setting with unmodulated DDI and can create stable solitons in other cases, not verified in the absence of modulations. Unstable solitons typically transform into persistent localized breathers. The solitons are often mobile, with inelastic collisions between them leading to oscillating localized modes. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the non-Markovianity of the dynamics of open quantum systems, focusing on the cases of independent and common environmental interactions. We investigate the degree of non-Markovianity quantified by two distinct measures proposed by Luo, Fu, and Song and Breuer, Laine, and Pillo. We show that the amount of non-Markovianity, for a single qubit and a pair of qubits, depends on the quantum process, the proposed measure, and whether the environmental interaction is collective or independent. In particular, we demonstrate that while the degree of non-Markovianity generally increases with the number of qubits in the system for independent environments, the same behavior is not always observed for common environments. In the latter case, our analysis suggests that the amount of non-Markovianity could increase or decrease depending on the properties of the considered quantum process. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soilborne fungus Rhizoctonia solani anastomosis group 3 (AG-3PT) is a globally important potato pathogen. However, little is known about the population genetic processes affecting field populations of R. solani AG-3PT, especially in the South American Colombian Andes, which is near the center of diversity of the two most common groups of cultivated potato, Solanum tuberosum and S. phureja. We analyzed the genetic structure of 15 populations of R. solani AG-3PT infecting potato in Colombia using 11 simple-sequence repeat (SSR) markers. In total, 288 different multilocus genotypes were identified among 349 fungal isolates. Clonal fractions within field populations were 7 to 33%. R ST statistics indicated a very low level of population differentiation overall, consistent with high contemporary gene flow, though moderate differentiation was found for the most distant southern populations. Genotype flow was also detected, with the most common genotype found widely distributed among field populations. All populations showed evidence of a mixed reproductive mode, including both asexual and sexual reproduction, but two populations displayed evidence of inbreeding. © 2013 The American Phytopathological Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that quantum discord might experience a sudden transition in its dynamics when calculated for certain Bell-diagonal states (BDS) that are in interaction with their surroundings. We examine this phenomenon, known as the sudden change of quantum discord, considering the case of two qubits independently interacting with dephasing reservoirs. We first demonstrate that, for a class of initial states which can be chosen arbitrarily close to BDS, the transition is in fact not sudden, although it might numerically appear so if not studied carefully. Then, we provide an extension of this discussion covering the X-shaped density matrices. Our findings suggest that the transition of quantum discord might be sudden only for an highly idealized zero-measure subset of states within the set of all possible initial conditions of two qubits. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stagnant effective thermal conductivities (K0) of sugar cane bagasse (SCB), wheat bran (WB), orange pulp and peel (OPP) and their combination (weight proportion 1:2:2 SCB/OPP/WB) were obtained using the line heat source method. These solid materials were applied to pectinase production via solid-state fermentation. The moisture content ranged from 4 to 80% (w.b.). A conduction mechanism through the porous media was observed, along with conduction through a liquid film and contact thermal resistance between the samples and the probe. K0 was low for intermediate moisture contents and approached the molecular conductivity of water for high moisture contents. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetable oils are used in the industry of processed food, including deep-fat frying. This work determined data on the thermophysical properties of cotton, canola, sunflower, corn, and soybean oils. Thermal conductivity, heat capacity, density, and viscosity were measured within the temperature range of 299.15-433.15 K. The data showed that the temperature influenced the thermophysical properties of the oils studied. The developed correlations could be used to predict these properties within the range of temperatures studied. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We suggest a time-dependent mean-field hydrodynamic model for a binary dipolar boson-fermion mixture to study the stability and collapse of fermions in the 164Dy-161Dy mixture. The condition of stability of the dipolar mixture is illustrated in terms of phase diagrams. A collapse is induced in a disk-shaped stable binary mixture by jumping the interspecies contact interaction from repulsive to attractive by the Feshbach resonance technique. The subsequent dynamics is studied by solving the time-dependent mean-field model including three-body loss due to molecule formation in boson-fermion and boson-boson channels. Collapse and fragmentation in the fermions after subsequent explosions are illustrated. The anisotropic dipolar interaction leads to anisotropic fermionic density distribution during collapse. This study is carried out in three-dimensional space using realistic values of dipolar and contact interactions. © 2013 American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Saúde Coletiva - FMB

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical approach aiming at the prediction of segregation of dopant atoms on nanocrystalline systems is discussed here. It considers the free energy minimization argument in order to provide the most likely dopant distribution as a function of the total doping level. For this, it requires as input (i) a fixed polyhedral geometry with defined facets, and (ii) a set of functions that describe the surface energy as a function of dopant content for different crystallographic planes. Two Sb-doped SnO2 nanocrystalline systems with different morphology and dopant content were selected as a case study, and the calculation of the dopant distributions expected for them is presented in detail. The obtained results were compared to previously reported characterization of this system by a combination of HRTEM and surface energy calculations, and both methods are shown to be equivalent. Considering its application pre-requisites, the present theoretical approach can provide a first estimation of doping atom distribution for a wide range of nanocrystalline systems. We expect that its use will support the reduction of experimental effort for the characterization of doped nanocrystals, and also provide a solution to the characterization of systems where even state-of-art analytical techniques are limited.