93 resultados para 030606 Structural Chemistry and Spectroscopy
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The CaSnO3 perovskite is investigated under geochemical pressure, up to 25 GPa, by means of periodic ab initio calculations performed at B3LYP level with local Gaussian-type orbital basis sets. Structural, elastic, and spectroscopic (phonon wave-numbers, infrared and Raman intensities) properties are fully characterized and discussed. The evolution of the Raman spectrum of CaSnO3 under pressure is reported to remarkably agree with a recent experimental determination [J. Kung, Y. J. Lin, and C. M. Lin, J. Chem. Phys. 135, 224507 (2011)] as regards both wave-number shifts and intensity changes. All phonon modes are symmetry-labeled and bands assigned. The single-crystal total spectrum is symmetry-decomposed into the six directional spectra related to the components of the polarizability tensor. The infrared spectrum at increasing pressure is reported for the first time and its main features discussed. All calculations are performed using the CRYSTAL14 program, taking advantage of the new implementation of analytical infrared and Raman intensities for crystalline materials. (C) 2015 AIP Publishing LLC.
Resumo:
Nano- (30-60 nm) and submicron (100-350 nm) ZnO particles were synthesized using solvothermal method at 200 degrees C from an ethanolic solution of zinc acetate dihydrate, applying different reaction conditions, i.e., pH value of precursor and time of the reaction. The X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance (DR), Raman spectroscopy, and photoluminescence (PL) spectroscopy have been employed for characterization of synthesized ZnO powders. It was shown that the structural, morphological, and optical properties are largely determined by reaction conditions during solvothermal synthesis. The particle crystallinity improves with the decrease of pH value and/or the increase of time of the reaction. The Raman and PL spectra analyses indicate that the oxygen interstitials are dominant intrinsic defects in solvothermally synthesized ZnO powders. It was observed that concentration of defects in wurtzite ZnO crystal lattices slightly changes with the variation of pH value of the precursor and time of the solvothermal reaction. The correlation between structural ordering and defect structure of particles and corresponding growth processes was discussed.