83 resultados para viscoelastic substances
Resumo:
The importance of this study is based on the need to obtain simple and efficient in vitro models to predict the in vivo toxicity of cosmetics, aiming not to use animals as experimental model. Here, we proposed the use of HepG2 cells, which are widely applied to simulate the hepatic function of the human organism in vitro. This cell line was chose since recent studies have shown that the liver is potentially the most frequently targeted organ by cosmetic ingredients, and beyond that, considering the widely application of in vitro assays to test the cutaneous permeation of cosmetic products, including the assays applying modified Franz cells, this technique becomes indispensable. Three different cosmetic active substances were used, and the toxicity to HepG2 cells was assessed by the MTT method. The treatment with hyaluronic acid showed no toxicity to HepG2 cells. Treating the cells with P. guajava L. extract were verified that increasing the amount of the extract in the media, the cellular viability decreased, and finally, the treatment of alpha-lipoic acid showed a cytoprotective effect in relation to the treatment with propylene glycol. The study demonstrated the suitability in using HepG2 cells to assess the safety of cosmetic active substances, helping in the prediction of if the substance could be hepatotoxic if could reach the bloodstream
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND: Previous studies have evaluated the effectiveness of postural drainage (PD), percussion (PERC), the coughing technique (CT), and other types of coughing in subjects with bronchiectasis. However, the application times of these techniques and the quality of the expectorated mucus require further study. The aim of our study was to evaluate the effectiveness of PD, percussion, CT, and huffing in subjects with bronchiectasis and assess the quantity and quality of bronchial mucus produced (measurement of wet and dry weight and determination of viscoelastic properties). METHODS: Twenty-two subjects with stable bronchiectasis (6 men; mean age: 51.5 y) underwent 4 d of experimental study (CT, PD+CT, PD+PERC+CT, and PD+huffing). The techniques were performed in 3 20-min periods separated by 10 min of rest. Before performing any technique (baseline) and after each period (30, 60, and 90 min), expectorated mucus was collected for analysis of viscoelasticity. RESULTS: A significant increase in the dry weight/wet weight ratio was found after 60 min of PD+PERC+CT (P = .01) and 90 min of PD+huffing (P = .03) and PD+PERC+CT (P = .007) in comparison with CT. PD+PERC+CT and PD+huffing led to the greatest removal of viscoelastic mucus at 60 min (P = .02 and P = .002, respectively) and continued to do so at 90 min (P = .02 and P = .01, respectively) in comparison with CT. An interaction effect was found, as all techniques led to a greater removal of elastic mucus in comparison with CT at 60 min (PD+CT, P = .001; PD+PERC+CT, P < .001; PD+huffing, P < .001), but only PD+PERC+CT and PD+huffing led to a greater removal of elastic mucus than CT at 90 min (P < .001 and P = .005, respectively). CONCLUSIONS: PD+PERC+CT and PD+huffing performed similarly regarding the removal of viscoelastic mucus in 2 and 3 20-min periods separated by 10 min of rest. PD+PERC+CT led to the greatest removal of mucus in the shortest period (2 20-min periods separated by 10 min of rest). (C) 2015 Daedalus Enterprises
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Many new viscoelastic materials have been developed recently to help improve noise and vibration levels in mechanical structures for applications in automobile and aeronautical industry. The viscoelastic layer treatment applied to solid metal structures modifies two main properties which are related to the mass distribution and the damping mechanism. The other property controlling the dynamics of a mechanical system is the stiffness that does not change much with the viscoelastic material. The model of such system is usually complex, because the viscoelastic material can exhibit nonlinear behavior, in contrast with the many available tools for linear dynamics. In this work, the dynamic behavior of sandwich beam is modeled by finite element method using different element types which are then compared with experimental results developed in the laboratory for various beams with different viscoelastic layer materials. The finite element model is them updated to help understand the effects in the damping for various natural frequencies and the trade-off between attenuation and the mass add to the structure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)