86 resultados para transparent glass ceramics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the fatigue resistance of the bond between dentin and glass-infiltrated alumina ceramic, using different luting protocols. Materials and Methods: The null hypothesis is that the fatigue resistance varies with the luting strategy. Forty blocks of In-Ceram Alumina were prepared, and one surface of each block was abraded with 110-μm aluminum oxide particles. Then, the blocks were luted to flat dentin surfaces of 40 human third molars, using 4 different luting strategies (luting system [LS]/ceramic surface conditioning [CSC]) (n=10): (G1) [LS] RelyX-Unicem/[CSC] airborne abrasion with 110-μm Al2O3 particles; (G2) [LS] One-Step + Duo-Link (bis-GMA-based resin)/[CSC] etching with 4% hydrofluoric acid + silane agent; (G3) [LS] ED-Primer + Panavia F (MDP-based resin)/[CSC] Al2O 3; (G4) [LS] Scotchbond1+RelyX-ARC (bis-GMA-based resin)/[CSC] chairside tribochemical silica coating (air abrasion with 30-μm SiO x particles + silane). After 24 h of water storage at 37°C, the specimens were subjected to 106 fatigue cycles in shear with a sinusoidal load (0 to 21 N, 8 Hz frequency, 37°C water). A fatigue survivor score was given, considering the number of the fatigue cycles until fracture. The failure modes of failed specimens were observed in a SEM. Results: G3 (score = 5.9, 1 failure) and G4 (score = 6, no failures) were statistically similar (p = 0.33) and had significantly higher fatigue resistance than G1 (score = 3.9, 5 failures) and G2 (score = 3.7, 6 failures) (p < 0.03). SEM analysis of fractured specimens of G1 and G2 showed that almost all the failures were between ceramic and cement. Conclusion: The MDP-based resin cement + sandblasting with Al2O3 particles (G3) and bis-GMA-based resin cement + tribochemical silica coating (G4), both using the respective dentin bonding systems, were the best luting protocols for the alumina ceramic. The null hypothesis was confirmed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of 2 different surface polishing procedures - glazing (GZ) and manual polishing (MP) - on the roughness of ceramics processed by computer-aided design/computer-aided manufacturing (CAD/CAM) and conventional systems (stratification technique). Eighty ceramic discs (diameter: 8 mm, thickness: 1 mm) were prepared and divided among 8 groups (n = 10) according to the type of ceramic disc and polishing method: 4 GZ and 4 MP. Specimens were glazed according to each manufacturer's recommendations. Two silicone polishing points were used on the ceramic surface for manual polishing. Roughness was measured using a surface roughness tester. The roughness measurements were made along a distance of 2 mm on the sample surface and the speed of reading was 0.1 mm/s. Three measurements were taken for each sample. The data (μm) were statistically analyzed using analysis of variance (ANOVA) and Tukey's test (α = 0.05). Qualitative analysis was performed using scanning electron microscopy (SEM). The mean (± SD) roughness values obtained for GZ were: 1.1 ± 0.40 μm; 1.0 ± 0.31 μm; 1.6 ± 0.31 μm; and 2.2 ± 0.73 μm. For MP, the mean values were: 0.66 ± 0.13 μm; 0.43 ± 0.14 μm; 1.6 ± 0.55 μm; and 2.0 ± 0.63 μm. The mean roughness values were significantly affected by the ceramic type (P = 0.0001) and polishing technique (P = 0.0047). The SEM images confirmed the roughness data. The manually polished glass CAD/CAM ceramics promoted lower surface roughness than did the glazed feldspathic dental ceramics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass foams using float glass waste and sodium hydroxide were produced. The influence of the sodium hydroxide amount in the foam formulation was studied. Titanium dioxide was used as a strengthening agent. The variations of temperature, heating rate and sintering time were investigated during the synthesis process. Open porosity was estimated using mercury porosimetry. The morphology of the glass foams was evaluated using scanning electron microscopy, phase formation was studied using X-ray diffraction, and chemical composition was estimated using X-ray fluorescence. As a result, glass foams with macroporosity were obtained. Since the glass foams used glass waste as reactant, the results suggest the development of an alternative route for glass recycling. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Methods: Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s + 60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α = 0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. Results: The interaction (etching time vs. surface treatment) was significant for Ra (p = 0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60 s group (p < 0.005). SEM revealed that etching affected the ceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p = 0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (p < 0.0001). None of experimental groups failed to show 95% confidence intervals of σ 0 and m overlapped. FEA showed lower stress concentration after resin treatment. Significance: HF acid etching time did not show a damaging effect on the ceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. © 2013 Academy of Dental Materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate the surface roughness of 5 indirect restorative materials treated with hydrofluoric acid to 10%, with aluminum oxide jet and a combination of both. The specimens was prepared with 10 mm in diameter and 2 mm thickness, divided into fi ve groups: (1) Ceromer (CeseadII-Kuraray), (2) Leucite crystals ceramics (IPS EmpressIIIvoclarforcasket), (3) glass ceramic with fluorapatite (IPS D. Sign-Ivoclar), (4) lithium disilicate ceramic (IPS Empress II-Ivoclar restorations), (5) ceramics (Cergogold-Degussa). For all groups were performed the controls, and the surfaces with the 3 types of treatment. For testing roughness used the rugosimeter Taylor/Hobson-Precision, model form tracerSV-C525 high sensitivity. After confi rmation of variance analysis with a signifi cance level of 1% (p < 0.01), there was equality between the average roughness of materials from groups 1, 3 and 5, and the group 2 was different from the others. It was also found that the ceramics of the group 5 behaved similar to group 4. However the lowest average roughness was observed in group 2 ceramic. In the evaluation between the types of treatment, the aluminum oxide jet and associations and blasting with hydrofl uoric acid were similar, and different isolated hydrofl uoric acid, and 3 types of treatment signifi cantly higher than the control group. All treatments promoted superfi cial alterations in all tested materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O-2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550 degrees C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the influence of different forms of heat treatment on a pre-hydrolyzed silane to improve the adhesion of phosphate monomer-based (MDP) resin cement to glass ceramic. Resin and feldspathic ceramic blocks (n=48, n=6 for bond test, n=2 for microscopy) were randomly divided into 6 groups and subject to surface treatments: G1: Hydrofluoric acid (HF) 9.6% for 20 s + Silane + MDP resin cement (Panavia F); G2: HF 9.6% for 20 s + Silane + Heat Treatment (oven) + Panavia F; G3: Silane + Heat Treatment (oven) + Panavia F; G4: HF 9.6% for 20 s + Silane + Heat Treatment (hot air) + Panavia F; G5: Silane + Heat Treatment (hot air) + Panavia F; G6: Silane + Panavia F. Microtensile bond strength (MTBS) test was performed using a universal testing machine (1 mm/min). After debonding, the substrate and adherent surfaces were analyzed using stereomicroscope and scanning electron microscope (SEM) to categorize the failure types. Data were analyzed statistically using two-way test ANOVA and Tukey's test (=0.05). Heat treatment of the silane containing MDP, with prior etching with HF (G2: 13.15 ± 0.89a; G4: 12.58 ± 1.03a) presented significantly higher bond strength values than the control group (G1: 9.16 ± 0.64b). The groups without prior etching (G3: 10.47 ± 0.70b; G5: 9.47 ± 0.32b) showed statistically similar bond strength values between them and the control group (G1). The silane application without prior etching and heat treatment resulted in the lowest mean bond strength (G6: 8.05 ± 0.37c). SEM analysis showed predominantly adhesive failures and EDS analysis showed common elements of spectra (Si, Na, Al, K, O, C) characterizing the microstructure of the glass-ceramic studied. Heat treatment of the pre-hydrolyzed silane containing MDP in an oven at 100 °C for 2 min or with hot air application at 50 ± 5 ºC for 1 min, was effective in increasing the bond strength values between the ceramic and resin cement containing MDP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550°C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.