106 resultados para tocopherol
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Pediatria - FMB
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study aimed to evaluate cardiac and lipoperoxidation markers in horses subjected to low intensity and long duration (TLD) exercise test, before and after vitamin E supplementation. For this purpose, 10 horses were used, subjecting them to the first TLD with a workload based on individual maximal oxygen uptake (VO2max). Then, horses received vitamin E (dl-alpha-tocopherol) during 59 days at a daily oral dose of 1,000IU, and thereafter they performed a second TLD with the same protocol as the first. Blood samples were collected to determine plasma malondialdehyde (MDA) as an index of lipoperoxidation, serum cardiac troponin I (cTnI) and creatine kinase MB isoenzyme (CK-MB) as cardiac markers. As a result of the exercise, there was no significant increase in MDA or cTnI, but serum CK-MB increased suggesting myocardial stress. The supplementation was able to minimize reactive oxygen species production, as evidenced by lower concentrations of MDA at all times evaluated, but it didn't cause protective effect on the myocardium. It was concluded that the low intensity and long duration exercise promoted light myocardial stress in horses and vitamin E supplementation reduced lipoperoxidation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Bioactive components in rice vary depending on the variety and growing condition. Fat-soluble components such as gamma-oryzanol, tocopherols, tocotrienols, carotenoids, and fatty acids were analyzed in brown, sugary brown, red, and black rice varieties using established high-performance liquid chromatography (HPLC) and GC methodologies. In addition, these colored rice varieties were further analyzed using a high-resolution liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) (LTQ-Orbitrap XL) to identify the [M-H](-) ions of gamma-oryzanol, ranging from m/z 573.3949 to 617.4211. The highest content of tocopherols (alpha-, 1.5; gamma-, 0.5 mg/100 g) and carotenoids (lutein 244; trans-beta carotene 25 mu g/100 g) were observed in black rice; tocotrienols (alpha-, 0.07; gamma-, 0.14 mg/100 g) in red rice, and gamma-oryzanol (115 mg/100 g) in sugary brown rice. In all colored rice varieties, the major fatty acids were palmitic (16:0), oleic (18:1n-9), and linoleic (18:2n-6) acids. When the gamma-oryzanol components were further analyzed by LC-MS/MS, 3, 10, 8, and 8 triterpene alcohols or sterol ferulates were identified in brown, sugary brown, red, and black rice varieties, respectively. Such structural identification can lead to the elucidation of biological function of each component at the molecular level. Consumption of colored rice rich in beneficial bioactive compounds may be a useful dietary strategy for achieving optimal health.