418 resultados para thermophilic microorganism


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The keratin is not degraded by common enzyme, keratinases have the ability to degrade native keratin and others insoluble enzymes. In the present work was Studied keratinase produced by Streptomyces sp LMI-1 isolated from industrial plant of poultry processing. The enzyme degraded 87% of feathers after 120 h, it was stimulated by Ba(2+) and inhibited by Ca(2+), Mn(2+), EDTA and Hg(+). The optimum pH and temperature for the enzyme was 8.5 and 60 degrees C, respectively. The enzyme was stable after 2 hours at 50 degrees C. The culture broth analysis by thin layer chromatography showed presence of amino acids serine, methionine, proline, tyrosine and leucine after 72 hours of incubation. The microorganism showed potential for use in industrial process because of higher enzyme production and feathers degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOO Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and effective tool in the treatment of water contaminated with BTEX mixture. Therefore, the raw petroleum refinery effluent might be a source of hydrocarbon-biodegrading microorganisms. (c) 2010 Elsevier B.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of sugarcane bagasse and grass as low cost raw material for xylanase production by Bacillus circulans D1 in submerged fermentation was investigated. The microorganism was cultivated in a mineral medium containing hydrolysate of bagasse or grass as carbon source. High production of enzyme was obtained during growth in media with bagasse hydrolysates (8.4 U/mL) and in media with grass hydrolysates (7.5 U/mL). Xylanase production in media with hydrolysates was very close to that obtained in xylan containing media (7.0 U/ mL) and this fact confirm the feasibility of using this agro-industrial byproducts by B. circulans D1 as an alternative to save costs on the enzyme production process. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bacterium isolated from soil contaminated by hydrocarbon was studied and, by biochemical tests and analysis of PCR, the presence of Bacillus pumilus was identified. The production of biosurfactant was optimized, test of oil degradation and antimicrobial activity determination. The results showed that pH 5.0 and 7.0, 72 h of fermentation, sucrose and sugar cane juice (2%) had best yields. The bacterium is able to degrade crude oil and displays bacteriostatic and fungistatic activity. From the analysis of proximate composition of biosurfactant found the presence of biopolymer formed by a lipopolysaccharide-protein complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, a 3(3) factorial design was performed with the aim of optimizing the culture conditions for xylanase production by an alkalophilic thermophilic strain of Bacillus circulans, using response surface methodology. The variables involved in this study were xylan concentration (X-1), pH (X-2) and cultivation time (X-3). The optimal response region was approached without using paths of steepest ascent. Statistical analysis of results showed that, in the range studied, only pH did not have a significant effect on xylanase production. A second-order model was proposed to represent the enzymic activity as a function of xylan concentration (X-1) and cultivation time (X-3). The optimum xylan concentration and cultivation time were 5 g/l and 48 h, respectively. Under these conditions, the model predicted a xylanase activity of 19.1 U/ml. (C) 2002 Elsevier B.V. Ltd. All rights reserved.