216 resultados para reverse transcription polymerase chain reaction
Resumo:
Androgen deprivation causes the rat ventral prostate to reduce to 10% of its original size by 21 days after castration. The regressive changes result from the loss of epithelial cells by apoptosis and marked reorganization of the stroma. We have investigated whether these changes are accompanied by variations in heparanase expression. The ventral prostate of castrated rats was collected and processed for the quantification of heparan sulfate (HS), for the measurement of heparanase expression and its localization by reverse transcription/polymerase chain reaction, Western blotting, and immunohistochemistry, and for transmission electron microscopy (TEM). Absolute HS content decreased significantly as early as day 7 after surgery. Heparanase mRNA peaked 7 days after castration. The heparanase proenzyme (65 kDa) and the active form (50 kDa) were identified and peaked on day 7 after castration; this coincided with maximum HS-degrading activity. Heparanase was located to the basolateral surface of epithelial cells and in the adjacent stroma. After castration, staining for heparanase was reduced in the epithelium and increased in the stroma. TEM revealed that the peak of heparanase expression at day 7 after castration was associated with extensive changes in the basement membrane of the epithelium, endothelium and smooth muscle cells involving cell shrinkage and/or deletion by apoptosis. These results suggest that heparanase expression increases after castration and correlates with a decreased amount of HS. This variation in heparanase expression is involved in tissue remodeling and in the control of the regressive pattern after 1 week of androgen deprivation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction ,,,,,Despite hepatocytes being the target cells of hepatitis C virus (HCV), viral ribonucleic acid RNA has been detected in other cells, including platelets, which have been described as carriers of the virus in the circulation of infected patients. Platelets do not express cluster differentiation 81 CD81, the main receptor for the virus in hepatocytes, although this receptor protein has been found in megakaryocytes. Still, it is not clear if HCV interacts with platelets directly or if this interaction is a consequence of its association with megakaryocytes. The aim of this study was to evaluate the interaction of HCV with platelets from non-infected individuals, after in vitro exposure to the virus. ,,,, ,,,, ,,,,,Methods ,,,,,Platelets obtained from 50 blood donors not infected by HCV were incubated in vitro at 37°C for 48h with serum containing 100,000IU∕mL of genotype 1 HCV. After incubation, RNA extracted from the platelets was assayed for the presence of HCV by reverse transcription – polymerase chain reaction RT-PCR. ,,,, ,,,, ,,,,,Results ,,,,,After incubation in the presence of virus, all samples of platelets showed HCV RNA. ,,,, ,,,, ,,,,,Conclusions ,,,,,The results demonstrate that, in vitro, the virus interacts with platelets despite the absence of the receptor CD81, suggesting that other molecules could be involved in this association.
Resumo:
The rat tail artery has been used for the study of vasoconstriction mediated by alpha(1A)-adrenoceptors (ARs). However, rings from proximal segments of the tail artery (within the initial 4 cm, PRTA) were at least 3- fold more sensitive to methoxamine and phenylephrine (n = 6 - 12; p < 0.05) than rings from distal parts (between the sixth and 10th cm, DRTA). Interestingly, the imidazolines N-[ 5-( 4,5- dihydro- 1H- imidazol-2-yl)-2-hydroxy-5,6,7,8- tetrahydronaphthalen- 1- yl] methanesulfonamide hydrobromide (A-61603) and oxymetazoline, which activate selectively alpha(1A)- ARs, were equipotent in PRTA and DRTA (n = 4 - 12), whereas buspirone, which activates selectively alpha(1D)-AR, was approximate to 70-fold more potent in PRTA than in DRTA (n = 8; p < 0.05). The selective alpha(1D)-AR antagonist 8-[2-[4-(methoxyphenyl)-1-piperazinyl] ethyl]-8-azaspiro[4.5] decane-7,9-dione dihydrochloride (BMY- 7378) was approximate to 70- fold more potent against the contractions induced by phenylephrine in PRTA (pK(B) of approximate to 8.45; n = 6) than in DRTA (pK B of approximate to 6.58; n = 6), although the antagonism was complex in PRTA. 5-Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximate to 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 ( n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)-ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities. antagonism was complex in PRTA. 5- Methylurapidil, a selective alpha(1A)-antagonist, was equipotent in PRTA and DRTA (pK(B) of approximate to 8.4), but the Schild slope in DRTA was 0.73 +/- 0.05 ( n = 5). The noncompetitive alpha(1B)-antagonist conotoxin rho-TIA reduced the maximal contraction induced by phenylephrine in DRTA, but not in PRTA. These results indicate a predominant role for alpha(1A)-ARs in the contractions of both PRTA and DRTA but with significant coparticipations of alpha(1D)-ARs in PRTA and alpha(1B)-ARs in DRTA. Semiquantitative reverse transcription-polymerase chain reaction revealed that mRNA encoding alpha(1A)- and alpha(1B)- ARs are similarly distributed in PRTA and DRTA, whereas mRNA for alpha(1D)-ARs is twice more abundant in PRTA. Therefore, alpha(1)-ARs subtypes are differentially distributed along the tail artery. It is important to consider the segment from which the tissue preparation is taken to avoid misinterpretations on receptor mechanisms and drug selectivities.
Resumo:
The objective of the present study was to investigate the effects of dietary macronutrient ratio on energy metabolism and on skeletal muscle mRNA expression of avian uncoupling protein (UCP), thought to be implicated in thermogenesis in birds. Broiler chickens from 2 to 6 weeks of age received one of three isoenergetic diets containing different macronutrient ratios (low-lipid (LL) 30 v. 77 g lipid/kg-, low-protein (LP) 125 v. 197 g crude protein (N X 6.25)/kg; low-carbohydrate (LC) 440 v. 520 g carbohydrate/kg). LP chickens were characterised by significantly lower body weights and food intakes compared with LL and LC chickens (-47 and -38% respectively) but similar heat production/kg metabolic body weight, as measured by indirect calorimetry, in the three groups. However, heat production/g food ingested was higher in animals receiving the LP diet (+41%, P<0.05). These chickens also deposited 57% less energy as protein (P<0.05) and 33% more as fat. No significant differences in energy and N balances were detected between LL and LC chickens. The diets with the higher fat contents (i.e. The LP and LC diets) induced slightly but significantly higher relative expressions of avian UCP mRNA in gastrocnemius muscle, measured by reverse transcription-polymerase chain reaction, than the LL diet (88 and 90 v. 78% glyceraldehyde-3-phosphate dehydrogenase respectively, P<0.05). Our present results are consistent with the recent view that UCP homologues could be involved in the regulation of lipid utilisation as fuel substrate and provide evidence that the macronutrient content of the diet regulates energy metabolism and especially protein and fat deposition.
Resumo:
Gap junctions are connexin-formed channels that play an important role in intercellular communication in most cell types. In the immune system, specifically in macrophages, the expression of connexins and the establishment of functional gap junctions are still controversial issues. Macrophages express P2X(7) receptors that, once activated by the binding of extracellular ATP, lead to the opening of transmembrane pores permeable to molecules of up to 900 Da. There is evidence suggesting an interplay between gap junctions and P2 receptors in different cell systems. Thus, we used ATP-sensitive and -insensitive J774.G8 macrophage cell lines to investigate this interplay. To study junctional communication in J774-macrophage-like cells, we assessed cell-to-cell communication by microinjecting Lucifer Yellow. Confluent cultures of ATP-sensitive J774 cells (ATP-s cells) are coupled, whereas ATP-insensitive J774 cells (ATP-i cells), derived by overexposing J774 cells to extracellular ATP until they do not display the phenomenon of ATP-induced permeabilization, are essentially uncoupled. Western-blot and reverse-transcription polymerase chain reaction assays revealed that ATP-s and ATP-i cells express connexin43 (Cx43), whereas only ATP-s cells express the P2X(7) receptor. Accordingly, ATP-i cells did not display any detectable ATP-induced current under whole-cell patch-clamp recordings. Using immunofluorescence microscopy, Cx43 reactivity was found at the cell surface and in regions of cell-cell contact of ATP-s cells, whereas, in ATP-i cells, Cx43 immunoreactivity was only present in cytosolic compartments. Using confocal microscopy, it is shown here that, in ATP-s cells as well as in peritoneal macrophages, Cx43 and P2X(7) receptors are co-localized to the membrane of ATP-s cells and peritoneal macrophages.
Resumo:
Asian soybean rust is a formidable threat to soybean (Glycine max) production in many areas of the world, including the United States. Only five sources of resistance have been identified (Resistance to Phakopsora pachyrhizi1 [Rpp1], Rpp2, Rpp3, Rpp4, and Rpp5). Rpp4 was previously identified in the resistant genotype PI459025B and mapped within 2 centimorgans of Satt288 on soybean chromosome 18 (linkage group G). Using simple sequence repeat markers, we developed a bacterial artificial chromosome contig for the Rpp4 locus in the susceptible cv Williams82 (Wm82). Sequencing within this region identified three Rpp4 candidate disease resistance genes (Rpp4C1-Rpp4C3 [Wm82]) with greatest similarity to the lettuce (Lactuca sativa) RGC2 family of coiled coil-nucleotide binding site-leucine rich repeat disease resistance genes. Constructs containing regions of the Wm82 Rpp4 candidate genes were used for virus-induced gene silencing experiments to silence resistance in PI459025B, confirming that orthologous genes confer resistance. Using primers developed from conserved sequences in the Wm82 Rpp4 candidate genes, we identified five Rpp4 candidate genes (Rpp4C1-Rpp4C5 [PI459025B]) from the resistant genotype. Additional markers developed from the Wm82 Rpp4 bacterial artificial chromosome contig further defined the region containing Rpp4 and eliminated Rpp4C1 (PI459025B) and Rpp4C3 (PI459025B) as candidate genes. Sequencing of reverse transcription-polymerase chain reaction products revealed that Rpp4C4 (PI459025B) was highly expressed in the resistant genotype, while expression of the other candidate genes was nearly undetectable. These data support Rpp4C4 (PI459025B) as the single candidate gene for Rpp4-mediated resistance to Asian soybean rust.
Resumo:
Xylella fastidiosa is a phytopathogen that causes diseases in different plant species. The development of disease symptoms is associated to the blockage of the xylem vessels caused by biofilm formation. In this study, we evaluated the sensitivity of biofilm and planktonic cells to copper, one of the most important antimicrobial agents used in agriculture. We measured the exopolysaccharides (EPS) content in biofilm and planktonic cells and used real-time reverse transcription polymerase chain reaction to evaluate the expression of the genes encoding proteins involved in cation/multidrug extrusion (acrA/B, mexE/czcA, and metI) and others associated with different copper resistance mechanisms (copB, cutA1, cutA2, and cutC) in the X. fastidiosa biofilm formed in two different media. We confirmed that biofilms are less susceptible to copper than planktonic cells. The amount of EPS seems to be directly related to the resistance and it varies according to the media where the cells are grown. The same was observed for gene expression. Nevertheless, some genes seem to have a greater importance in biofilm cells resistance to copper. Our results suggest a synergistic effect between diffusion barriers and other mechanisms associated with bacterial resistance in this phytopathogen. These mechanisms are important for a bacterium that is constantly under stress conditions in the host.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Vascular endothelial growth factor (VEGF) is a macromolecule of importance in inflammation that has been implicated in periodontitis. The aims of this study were to investigate VEGF expression during the progression of periodontal disease and to evaluate the effect of a preferential cyclooxygenase (COX)-2 inhibitor meloxicam on VEGF expression and alveolar bone loss in experimentally induced periodontitis.Methods: A total of 120 Wistar rats were randomly separated into groups 1 (control) and 2 (meloxicam, 3 mg/kg/day, intraperitoneally, for 3, 7, 14, or 30 days). Silk ligatures were placed at the gingival margin level of the lower right first molar of all rats. VEGF expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blot (WB), and immunohistochemical (IHC) analyses. The hemiarcades were processed for histopathologic analysis. RT-PCR and WB results were submitted to analysis of variance, the Tukey test, and Pearson correlation analysis (P<0.05).Results: A reduction in alveolar bone resorption was observed in the meloxicam-treated group compared to the control group at all periods studied. There was a positive correlation between COX-2 mRNA and VEGF mRNA in the gingival tissues and periodontal disease (R = 0.80; P = 0.026). Meloxicam significantly reduced the increased mRNA VEGF expression in diseased tissues after 14 days of treatment (P = 0.023). Some alterations in VEGF receptor I mRNA expression were observed, but these were not statistically significant. VEGF protein expression in WB experiments was significantly higher in diseased sites compared to healthy sites (P<0.05). After 14 days of treatment with meloxicam, an important decrease in VEGF protein expression was detected in diseased tissues (P = 0.08). Qualitative IHC analysis revealed that VEGF protein expression was higher in diseased tissues and decreased in tissues from rats treated with meloxicam.Conclusions: The present data suggest an important role for VEGF in the progression of periodontal disease. Systemic therapy with meloxicam can modify the progression of experimentally induced periodontitis in rats by reducing VEGF expression and alveolar bone loss.
Resumo:
There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of 'B' and 'C' splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the 'B' and 'C' spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrp1p is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using-functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrp1p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrp1p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.
Resumo:
The biological effects of catecholamines in mammalian pigment cells are poorly understood. Our previous results showed the presence of α1-adrenoceptors in SK-Mel 23 human melanoma cells. The aims of this work were to (1) characterize catecholamine effects on proliferation, tyrosinase activity and expression, (2) identify the α1- adrenoceptor subtypes, and (3) verify whether chronic norepinephrine (NE) treatment modified the types and/or pharmacological characteristics of adrenoceptors present in SK-Mel 23 human melanoma cells. Cells treated with the aradrenergic agonist, phenylephrine (PHE, 10-5 or 10-4 M), for 24-72 h, exhibited decreased cell proliferation and enhanced tyrosinase activity, but unaltered tyrosinase expression as compared with the control. The proliferation and tyrosinase activity responses were inhibited by the α1-adrenergic antagonist prazosin, suggesting they were evoked by α1-adrenoceptors. The presence of actinomycin D, a transcription inhibitor, did not diminish PHE-induced effects. RT-PCR assays, followed by cloning and sequencing, demonstrated the presence of α1A- and α1B-adrenoceptor subtypes. NE-treated cells (24 or 72 h) were used in competition assays, and showed no significant change in the competition curves of α1-adrenoceptors as compared with control curves. Other adrenoceptor subtypes were not identified in these cells, and NE pretreatment did not induce their expression. In conclusion, the activation of SK-Mel 23 human melanoma α1- radrenoceptors elicit biological effects, such as proliferation decrease and tyrosinase activity increase. Desensitization or expression of other adrenoceptor subtypes after chronic NE treatment were not observed.
Resumo:
Tamoxifen was proven to reduce the incidence of breast cancer by 49% in women at increased risk of the disease in the Breast Cancer Prevention Trial. In order to identify potential candidates to explain the preventive effect induced by tamoxifen on breast cancer, normal breast tissue obtained from 42 fibroadenoma patients, randomly assigned to receive placebo or tamoxifen, was analyzed by the reverse Northern blot and RT-PCR techniques. The cDNA fragments used on Northern blot membranes were generated by the Human Cancer Genome Project funded by the Ludwig Institute for Cancer Research and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil). Total RNA was obtained from normal breast tissue from patients with clinical, cytological and ultrasound diagnosis of fibroadenoma. After a 50-day treatment with tamoxifen (10 or 20 mg/day) or placebo, normal breast tissue adjacent to the tumor was collected during lumpectomy with local anesthesia. One differentially expressed gene, Calcium/calmodulin-dependent protein kinase II (CaMKII), was found to be down-regulated during TAM treatment. CaMKII is an ubiquitous serine/threonine protein kinase that has been implicated in the diverse effects of hormones utilizing Ca2+ as a second messenger as well as in c-fos activation. These results indicate that the down-regulation of CaMKII induced by TAM might represent alternative or additional mechanisms of the action of this drug on cell cycle control and response to hormones in normal human breast tissue.