89 resultados para propylene epoxidation
Resumo:
trans,trans-2,4-Decadienal (DDE) is an important breakdown product of lipid peroxidation. This aldehyde is cytotoxic to mammalian cells and is known to be implicated in DNA damage. Therefore, attempts were made in this work to assess the reactivity of DDE with 2'-deoxyadenosine (dAdo). It was shown that DDE is able to bind to 2'-deoxyadenosine, yielding highly fluorescent products. Besides 1,N-6-etheno-2'-deoxyadenosine (epsilon dAdo), two other related adducts, 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)3H-imidazo[2,1-i]purin-7-yl]-1,2,3-octanetriol and 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2,1-i]purin-7-yl]-1,2-heptanediol, were isolated by reverse phase high-performance liquid chromatography and characterized on the basis of their UV, fluorescence, nuclear magnetic resonance, and mass spectrometry features. The reaction mechanism for the formation of the DDE-2'-deoxyadenosine adducts involves 2,4-decadienal epoxidation and subsequent addition to the N-2 amino group of 2'-deoxyadenosine, followed by cyclization at the N-1 site. Adducts differ by the length of carbon side chain and the number of hydroxyl groups. The present data indicate that DDE can be epoxidized by peroxides, and the resulting products are able to form several adducts with 2'-deoxyadenosine and/or DNA. Endogenous DNA adduct formation can contribute to the already reported high cytotoxicity of DDE to mammalian cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The importance of this study is based on the need to obtain simple and efficient in vitro models to predict the in vivo toxicity of cosmetics, aiming not to use animals as experimental model. Here, we proposed the use of HepG2 cells, which are widely applied to simulate the hepatic function of the human organism in vitro. This cell line was chose since recent studies have shown that the liver is potentially the most frequently targeted organ by cosmetic ingredients, and beyond that, considering the widely application of in vitro assays to test the cutaneous permeation of cosmetic products, including the assays applying modified Franz cells, this technique becomes indispensable. Three different cosmetic active substances were used, and the toxicity to HepG2 cells was assessed by the MTT method. The treatment with hyaluronic acid showed no toxicity to HepG2 cells. Treating the cells with P. guajava L. extract were verified that increasing the amount of the extract in the media, the cellular viability decreased, and finally, the treatment of alpha-lipoic acid showed a cytoprotective effect in relation to the treatment with propylene glycol. The study demonstrated the suitability in using HepG2 cells to assess the safety of cosmetic active substances, helping in the prediction of if the substance could be hepatotoxic if could reach the bloodstream
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Estimation of the lower flammability limits of C-H compounds at 25 degrees C and 1 atm; at moderate temperatures and in presence of diluent was the objective of this study. A set of 120 degrees C H compounds was divided into a correlation set and a prediction set of 60 compounds each. The absolute average relative error for the total set was 7.89%; for the correlation set, it was 6.09%; and for the prediction set it was 9.68%. However, it was shown that by considering different sources of experimental data the values were reduced to 6.5% for the prediction set and to 6.29% for the total set. The method showed consistency with Le Chatelier's law for binary mixtures of C H compounds. When tested for a temperature range from 5 degrees C to 100 degrees C , the absolute average relative errors were 2.41% for methane; 4.78% for propane; 0.29% for iso-butane and 3.86% for propylene. When nitrogen was added, the absolute average relative errors were 2.48% for methane; 5.13% for propane; 0.11% for iso-butane and 0.15% for propylene. When carbon dioxide was added, the absolute relative errors were 1.80% for methane; 5.38% for propane; 0.86% for iso-butane and 1.06% for propylene. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Pós-graduação em Química - IQ