132 resultados para penalty-based genetic algorithm
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this letter, a genetic algorithm (GA) is applied to solve - the static and multistage transmission expansion planning (TEP) problem. The characteristics of the proposed GA to solve the TEP problem are presented. Results using some known systems show that the proposed GA solves a smaller number of linear programming problems in order to find the optimal solutions and obtains a better solution for the multistage TEP problem.
Resumo:
A mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints are presented. The methodology allows one to find an optimal and reliable transmission network expansion plan using a DC model to represent the electrical network. The security (n-1) criterion is used. The model presented is solved using a genetic algorithm designed to solve the reliable expansion planning in an efficient way. The results obtained for several known systems from literature show the excellent performance of the proposed methodology. A comparative analysis of the results obtained with the proposed methodology is also presented.
Resumo:
This article introduces an efficient method to generate structural models for medium-sized silicon clusters. Geometrical information obtained from previous investigations of small clusters is initially sorted and then introduced into our predictor algorithm in order to generate structural models for large clusters. The method predicts geometries whose binding energies are close (95%) to the corresponding value for the ground-state with very low computational cost. These predictions can be used as a very good initial guess for any global optimization algorithm. As a test case, information from clusters up to 14 atoms was used to predict good models for silicon clusters up to 20 atoms. We believe that the new algorithm may enhance the performance of most optimization methods whenever some previous information is available. (C) 2003 Wiley Periodicals, Inc.
Resumo:
This paper presents two mathematical models and one methodology to solve a transmission network expansion planning problem considering uncertainty in demand. The first model analyzed the uncertainty in the system as a whole; then, this model considers the uncertainty in the total demand of the power system. The second one analyzed the uncertainty in each load bus individually. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The models presented are solved using a specialized genetic algorithm. The results obtained for several known systems from literature show that cheaper plans can be found satisfying the uncertainty in demand.
Resumo:
We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.
Resumo:
We have investigated and extensively tested three families of non-convex optimization approaches for solving the transmission network expansion planning problem: simulated annealing (SA), genetic algorithms (GA), and tabu search algorithms (TS). The paper compares the main features of the three approaches and presents an integrated view of these methodologies. A hybrid approach is then proposed which presents performances which are far better than the ones obtained with any of these approaches individually. Results obtained in tests performed with large scale real-life networks are summarized.
Resumo:
Reliability of power supply is related, among other factors, to the control and protection devices allocation in feeders of distribution systems. In this way, optimized allocation of sectionalizing switches and protection devices in strategic points of distribution circuits, improves the quality of power supply and the system reliability indices. In this work, it is presented a mixed integer non-linear programming (MINLP) model, with real and binary variables, for the sectionalizing switches and protection devices allocation problem, in strategic sectors, aimed at improving reliability indices, increasing the utilities billing and fulfilling exigencies of regulatory agencies for the power supply. Optimized allocation of protection devices and switches for restoration, allows that those faulted sectors of the system can be isolated and repaired, re-managing loads of the analyzed feeder into the set of neighbor feeders. Proposed solution technique is a Genetic Algorithm (GA) developed exploiting the physical characteristics of the problem. Results obtained through simulations for a real-life circuit, are presented. © 2004 IEEE.
Resumo:
This paper presents a mathematical model and a methodology to solve the transmission network expansion planning problem with security constraints in full competitive market, assuming that all generation programming plans present in the system operation are known. The methodology let us find an optimal transmission network expansion plan that allows the power system to operate adequately in each one of the generation programming plans specified in the full competitive market case, including a single contingency situation with generation rescheduling using the security (n-1) criterion. In this context, the centralized expansion planning with security constraints and the expansion planning in full competitive market are subsets of the proposal presented in this paper. The model provides a solution using a genetic algorithm designed to efficiently solve the reliable expansion planning in full competitive market. The results obtained for several known systems from the literature show the excellent performance of the proposed methodology.
Resumo:
This chapter studies a two-level production planning problem where, on each level, a lot sizing and scheduling problem with parallel machines, capacity constraints and sequence-dependent setup costs and times must be solved. The problem can be found in soft drink companies where the production process involves two interdependent levels with decisions concerning raw material storage and soft drink bottling. Models and solution approaches proposed so far are surveyed and conceptually compared. Two different approaches have been selected to perform a series of computational comparisons: an evolutionary technique comprising a genetic algorithm and its memetic version, and a decomposition and relaxation approach. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering uncertainty in demand and generation. The methodology used to solve the problem, finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with uncertainty. The model presented results in an optimization problem that is solved using a specialized genetic algorithm. The results obtained for known systems from the literature show that cheaper plans can be found satisfying the uncertainty in demand and generation. ©2008 IEEE.
Resumo:
This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering open access. The methodology finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with multiples generation scenarios. The model presented is solved using a specialized genetic algorithm. The methodology is tested in a system from the literature. ©2008 IEEE.
Resumo:
This paper presents a methodology and a mathematical model to solve the expansion planning problem that takes into account the effect of contingencies in the planning stage, and considers the demand as a stochastic variable within a specified range. In this way, it is possible to find a solution that minimizes the investment costs guarantying reliability and minimizing future load shedding. The mathematical model of the expansion planning can be represented by a mixed integer nonlinear programming problem. To solve this problem a specialized Genetic Algorithm combined with Linear Programming was implemented.
Resumo:
Nowadays, we return to live a period of lunar exploration. China, Japan and India heavily invest in missions to the moon, and then try to implement manned bases on this satellite. These bases must be installed in polar regions due to the apparent existence of water. Therefore, the study of the feasibility of satellite constellations for navigation, control and communication recovers importance. The Moon's gravitational potential and resonant movements due to the proximity to Earth as the Kozai-Lidov resonance, must be considered in addition to other perturbations of lesser magnitude. The usual satellite constellations provide, as a basic feature, continuous and global coverage of the Earth. With this goal, they are designed for the smallest number of objects possible to perform a specific task and this amount is directly related to the altitude of the orbits and visual abilities of the members of the constellation. However the problem is different when the area to be covered is reduced to a given zone. The required number of space objects can be reduced. Furthermore, depending on the mission requirements it may be not necessary to provide continuous coverage. Taking into account the possibility of setting up a constellation that covers a specific region of the Moon on a non-continuous base, in this study we seek a criterion of optimization related to the time between visits. The propagation of the orbits of objects in the constellation in conjunction with the coverage constraints, provide information on the periods of time in which points of the surface are covered by a satellite, and time intervals in which they are not. So we minimize the time between visits considering several sets of possible constellations and using genetic algorithms.
Resumo:
A metaheuristic technique for solving the short-term transmission network expansion and reactive power planning problems, at the same time, in regulated power systems using the AC model is presented. The problem is solved using a real genetic algorithm (RGA). For each topology proposed by RGA an indicator is employed to identify the weak buses for new reactive power sources allocation. The fitness function is calculated using the cost of each configuration as well as constraints deviation of an AC optimal power flow (OPF) in which the minimum reactive generation of new reactive sources and the active power losses are objectives. With allocation of reactive power sources at load buses, the circuit capacity increases and the cost of installation could be decreased. The method is tested in a well known test system, presenting good results when compared with other approaches. © 2011 IEEE.